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Basic Definitions

We only assume bit-by-bit public-key encryption

Public Key Homomorphic Encryption Scheme
E = (KeyGenE ,EncryptE ,DecryptE ,EvaluateE ), all run in poly. time.

KeyGen(λ) = (sk, pk),Encrypt(pk,m) = c

Decrypt(sk, c) = m′,Evaluate(pk,C , (c1, . . . , cr )) = ce

Correct Homomorphic Decryption
E is correct for a given t-input circuit C if, ∀(sk, pk)← KeyGen(λ),
∀m1, . . . ,mt ∈ {0, 1}, ∀c = (c1, . . . , ct ) with ci ← EncryptE (pk,mi )

Decrypt(sk,Evaluate(pk,C , c)) = C (m1, . . . ,mt )

Homomorphic Encryption
E homomorphic for a class C of circuits: correct for all circuits C ∈ C
E fully homomorphic encryption (FHE) scheme: correct for all boolean circuits
E somewhat homomorphic encryption (SHE) scheme: limited # of op.



Basic Definitions

Security Definitions
game between a challenger and an adversary A = (A1,A2)

I (pk, sk)← KeyGen(1λ)

I (m0,m1)← A(·)
1 (pk) /* Stage 1 */

I b ← {0, 1}
I c∗ ← Encrypt(mb, pk)

I b′ ← A(·)
2 (c∗) /* Stage 2 */

If b = b′: A wins game with

AdvIND-atk
A,E ,λ = |Pr(b = b′)− 1/2|

Scheme IND-atk secure if no poly. time A wins with non-negl. adv.
IND-atk secure

uu �� **
A no oracle access

atk=CPA
decr. oracle access in Stage 1

atk=CCA1
decr. oracle access in Stage 1,2

atk=CCA2



Quick overview of FHE based on hardness assumptions

I 1978: Rivest et al [RAD78]: is it possible to perform arbitrary operations on
encrypted ciphertexts? (privacy homomorphism / FHE)

I 2009: Gentry [Gen09b]: yes!

Hardness
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Figure : Hardness assumptions and relevant papers



Homomorphic Encryption and IND-CPA,CCA

I All known SHE and FHE schemes: IND-CPA secure
I No SHE and FHE scheme can be IND-CCA2
I With Gentry’s approach, FHE scheme cannot be IND-CCA1 secure
I Open problem: investigate SHE schemes with IND-CCA1 security (Gentry
[Gen09b])
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Key Recovery Attacks - Our Contribution

Our contribution
1. key recovery attack for SHE schemes in [LATV12, BLLN13]

2. SHE schemes in (4) above are not IND-CCA1 secure

3. conclusion: with results from [LMSV12, ZPS12, CT14], most existing SHE
schemes (except [LMSV12]) suffer from key recovery attacks, so not IND-CCA1
secure



Key Recovery Attacks - The Idea

General line of work
I Premise: decryption oracle reveals one bit at a time or a polynomial in
Z2[x ]/(xn + 1)

I Idea: we submit to decryption oracle specifically-chosen ’ciphertexts’ in order to
get 1 bit of information for each coefficient of sk

I recover sk by gradually reducing (halving) the key space



Key Recovery Attack against SHE [LATV12]
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Key Recovery Attack against [LATV12]

The [LATV12] SHE scheme (informal)
M = Z2, R := Z[x ]/(xn + 1)

KeyGen(λ) :

I [· · · ]

I sk := f ∈ R

Encrypt(pk,m):
I sample s, e ← χ

I output ciphertext
c := hs + 2e +m ∈ Rq

Decrypt(sk, c):
I let µ = f · c ∈ Rq

I output µ′ := µ mod 2

Comparison with [DGM15]

I attack exists in [DGM15], but require 6(t2 + t) < q and B2 <
q

36t2
(conditions

not assumed in [LATV12])
I our attack: works for all parameters. More efficient than [DGM15]:

Our Attack Attack from [DGM15]
blog2Bc+ n n · dlog2Be+ n

I n: power of 2; B � q bound on coefficient of χ; t ≥ 2 integer



Key Recovery Attack against [LATV12]

KeyGen(λ) :

I sk := s(x) = s0 + s1x + s2x2 + · · ·+
sn−1xn−1 ∈ Rq

Encrypt(pk,m):
I output ciphertext c(x) ∈ Rq

Decrypt(sk, c(x)):
I output s(x) · c(x) ∈ Rq mod 2

Key recovery attack - The Idea

I determine the parity of each coefficient si ∈ (−q/2, q/2]
I determine |si | by gradually halving the interval in which it lies
I at some point, |si | belongs to some interval with at most two consecutive integers
I |si | deduced by its known parity
I last step: query the oracle decryption at most n times in order to recover the sign
of the coefficients si , for i = 1, 2, . . . , n− 1, relative to the (unknown) sign of s0

I two possible candidate secret keys s1(x) and s2(x) = −s1(x)
I find whether s(x) = s1(x) or s(x) = s2(x) with extra oracle query



Key Recovery Attack against [LATV12] - Details
Preliminary Step

I submit to dec. oracle c(x) = 1 ∈ Rq

I oracle returns D(c(x) = 1) = s(x) mod 2 = ∑n−1
i=0 (si mod 2)x i

I ⇒ we learn parity of si , i = 0, 1, . . . , n− 1

Step 1

I submit to dec. oracle c(x) = 2 ∈ Rq

I oracle returns D(c(x) = 2) = (2s(x) ∈ Rq) mod 2 = ∑n−1
i=0 [(2si mod q) mod 2] x i

I Now, ∀i ∈ [0, n− 1] we have

−q + 1
2

≤ si ≤
q − 1
2

, and so − q + 1 ≤ 2si ≤ q − 1 (A)

∀i , two cases to distinguish:

Case A1: (2si mod q) mod 2 = 0.
Then, condition (A) implies that
−q+1

2 ≤ 2si ≤ q−1
2 , i.e.

−q+1
4 ≤ si ≤ q−1

4

− q + 1 ≤ 4si ≤ q − 1 (A1)

Case B1: (2si mod q) mod 2 = 1.
Then, condition (A) implies that
q−1
2 + 1 ≤ 2|si | ≤ q − 1, i.e.

q+1
4 ≤ |si | ≤ q−1

2

q + 1 ≤ 4|si | ≤ 2q − 2 (B1)



Key Recovery Attack against [LATV12] - Details

Step 2

I submit to dec. oracle c(x) = 4 ∈ Rq

I oracle returns D(c(x) = 4) = [s(x) · 4]q mod 2 = ∑n−1
i=0 [[4si ]q mod 2] x i

I Now, ∀i , four cases to distinguish:

Case A2: In Step 1 case A1 held, and
[4si ]q mod 2 = 0. Then, condition
(A1) implies that −q+1

2 ≤ 4si ≤ q−1
2 ,

i.e. −q+1
8 ≤ si ≤ q−1

8

− q + 1 ≤ 8si ≤ q − 1 (A2)

Case B2: In Step 1 case A1 held, and
[4si ]q mod 2 = 1. Then, condition
(A1) implies that
q−1
2 + 1 ≤ 4|si | ≤ q − 1, i.e.

q+1
8 ≤ |si | ≤ q−1

4

q + 1 ≤ 8|si | ≤ 2q − 2 (B2)

Case C2: In Step 1 case B1 held, and
[4si ]q mod 2 = 0. Then, condition
(B1) implies that
q + 1+ q−1

2 ≤ 4|si | ≤ 2q − 2, i.e.
3q+1

8 ≤ |si | ≤ q−1
2

3q + 1 ≤ 8|si | ≤ 4q − 4 (C2)

Case D2: In Step 1 case B1 held, and
[4si ]q mod 2 = 1. Then, condition
(B1) implies that q+ 1 ≤ 4|si | ≤ 3q−1

2 ,
i.e. q+1

4 ≤ |si | ≤ 3q−1
8

2q + 2 ≤ 8|si | ≤ 3q − 1 (D2)



































Key Recovery Attack against [LATV12] - Details

Generalizing

I continue, and we find s ′i := |si | ∈ [ai , ai + 1] ⊆ [0, q−1
2 ], for i = 0, 1, . . . , n− 1

I |si | can assume at most only two (consecutive) values
I known parity ⇒ determine |si |
I to achieve this we need blog2qc steps

Last step

I Left to find out whether si · sj < 0 or si · sj > 0, ∀i , j with si , sj 6= 0
I Let sm be the first non-zero coefficient: we will obtain two possible candidates of
sk, one with sm > 0 and one with sm < 0

I trivial oracle dec. query to determine which one is the correct sk
I omit details



Key Recovery Attack against SHE [BLLN13]
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Key Recovery Attack against [BLLN13]

Parameters Setup

I M = R/tR = Zt [x ]/(xn + 1), R = Z[x ]/(xn + 1)
I d power of 2, q ∈N prime integer, t ∈N s.t. 1 < t < q
I χkey,χerr distributions on R
I operations on ciphertexts in Rq := Zq [x ]/(xn + 1)

The [BLLN13] SHE scheme (informal)

KeyGen(λ) :

I [· · · ]

I set sk := f ∈ Rq

Encrypt(pk,m):
I for message m+ tR, let [m]t be its
representative

I sample s, e ← χerr

I output ciphertext
c = [bq/tc[m]t + e + hs ]q ∈ Rq

Decrypt(sk, c):

I output m =
[⌊

t
q · [fc ]q

⌉]
t
∈ Rt



Key Recovery Attack against [BLLN13]

KeyGen(λ) :

I [· · · ]

I set sk := f (x) = f0 + f1x + f2x2 +

· · ·+ fn−1xn−1 ∈ Rq =
Zq [x ]
(xn+1)

Encrypt(pk,m):
I [· · · ]
I output c(x) = c0 + c1x + c2x2 +

· · ·+ cn−1xn−1 ∈ Rq =
Zq [x ]
(xn+1)

Decrypt(sk, c):

I output m =
[⌊

t
q · [fc ]q

⌉]
t
∈ Rt

Comparison with [DGM15]

I attack already exists in [DGM15], but require 6(t2 + t) < q and B2 <
q

36t2
(conditions not assumed in [LATV12])

I our attack: works for all parameters. More efficient than [DGM15]:
Our Attack Attack from [DGM15]

(t is odd) dlog2(B/t)e n · dlog2Be
(t is even but not 2) dlog2(B/t)e+ n n · dlog2Be
(t = 2) dlog2(B/t)e+ n n · dlog2Be+ n

I n: power of 2; B � q bound on coefficient of χ; t ≥ 2 integer



Key Recovery Attack against [BLLN13]

KeyGen(λ) :

I [· · · ]

I set sk := f (x) = f0 + f1x + f2x2 +

· · ·+ fn−1xn−1 ∈ Rq =
Zq [x ]
(xn+1)

Encrypt(pk,m):
I [· · · ]
I output c(x) = c0 + c1x + c2x2 +

· · ·+ cn−1xn−1 ∈ Rq =
Zq [x ]
(xn+1)

Decrypt(sk, c):

I output m =
[⌊

t
q · [fc ]q

⌉]
t
∈ Rt

Key recovery attack - The main idea - we omit the details

I General idea: as usual, gradually reducing the interval in which the sk lie
I However, more complicated since we have to take into account and create several
cases according to t odd, t even but 6= 2, and t = 2

I After each step k, fi is determined up to an error
q
2k t

I we continue in this fashion until
q
2k t
≤ 1



Conclusion and Future Directions

I SHE schemes from [BV11b, BV11a, BGV12, Bra12, GSW13, LATV12, BLLN13]
suffer from key recovery attacks when the attacker is given access to the
decryption oracle

I together with results from [LMSV12]: most existing SHE schemes suffer from key
recovery attacks; not IND-CCA1 secure

I next step: to investigate whether it is possible to enhance these SHE schemes to
avoid key recovery attacks and make them IND-CCA1 secure



Thank you for your attention!

massimo.chenal@uni.lu; qiang.tang@uni.lu
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