EFFICIENT EPHEMERAL ELLIPTIC CURVE CRYPTOGRAPHIC KEYS

Andrea Miele, Arjen K. Lenstra

MOTIVATION

- ECC: use of fixed elliptic curve, finite field from public standards ''standard material/technology to manufacture keys'':
- I. Need to trust standard's (material/technology) designer(s)
- 2. Use of same standard (material/technology) incentive to attackers
- Alternatively one can generate their own curves...

- We want personalized real time curve selection for ECDH keyexchange, ideally a unique curve per session
- Interference of third parties on parameter choice, exposure to cryptanalysis and attack window/payoff are all minimized

PROBLEM

(from http://stlbuyerguide.com)

- Two parties want to agree on a unique secure "ephemeral" pair elliptic curve equation, prime field for an ECDH key-exchange
- Question: can parties generate secure, unique, unpredictable, ephemeral ECC parameters in real time on their smartphones?

GENERATING ELLIPTIC CURVES FOR ECC (PRIME FIELDS)

- 1. For $\approx k$ bits of security: select random 2k-bit (recall rho's run time...) prime.Then pick a random curve $E_{a,b}(F_P)$ until $\#E_{a,b}(F_P)$ (quasi-)prime
- 2. Compute order with point-counting (SEA) (too slow for real-time!)
- Additionally (twist-security) search until $\#\tilde{E}$ also (quasi-)prime For a prime p, $\#E_{a,b}(F_P) = p+l-t$ with $|t| \le 2\sqrt{P}$, quadratic twist's order $\#\tilde{E}=p+l+t$ where $\tilde{E}=E_r^{2}_{a,r}^{3}_{b}$ with r any non-square in F_P

POINT COUNTING

Currently, too slow for real time

MAGMA on Intel Core i7-3820QM 2.7GHz

	80-bit security	I I 2-bit security	128-bit security
ECC	2s	47 s	120s
twist-secure ECC	6m	37m	83m

COMPLEX MULTIPLICATION METHOD

- I. Select a CM curve first (a subset of cryptographically interesting curves...)
- 2. Find a prime of a particular form
- 3. Compute order in a cheap way!

The Q-curve of Costello, Longa (Microsoft Research) is CM curve...

CM METHOD STEPS

- I. Pick a square-free positive integer $d \neq I,3$, compute the Hilbert class polynomial $H_d(X)$ of $Q(\sqrt{-d})$ (degree h_d) assume ($d \equiv 3 \mod 4$)
- 2. Find integers $u,v: u^2+dv^2 = 4p$ such that p is prime
- 3. Solve $H_d(X) \equiv 0 \mod p$ to find root j then $(a,b) = \left(\frac{-27j}{4(j-12^3)}, \frac{27j}{4(j-12^3)}\right) \in \mathbf{F}_p^2$ defines $\mathbf{E}_{a,b}(\mathbf{F}_p)$ with $\#\mathbf{E}_{a,b} = \mathbf{p} + \mathbf{I} \pm \mathbf{u}$ and $\#\tilde{\mathbf{E}} = \mathbf{p} + \mathbf{I} \mp \mathbf{u}$

REALTIME CM

- CM for small h_d still too slow... but for "very small" h_d (<5): Solve $H_d(X)$ by radicals to get root j, store d and (a,b) in a table
- [Lenstra99]: table for $h_d = I(8 \text{ curves})$:

```
start: Select random positive integers u,v₀
for i=0 to L-l
v=v₀+i
for each d in the table
    if p: u²+dv²= 4p is prime and p+l±u (orders) are (quasi-)prime
    return p and (a,b) reduced modulo p
goto start
```

OUR CONTRIBUTIONS

- We extended the subset with **II** more equations
- We improved method by **sieving** for prime **p** and (quasi-)prime orders
- We implemented extra options, e.g. twist security, Montgomery-friendly
- C implementation based on GMP for PCs and Android (JNI/NDK)

SIEVING IDEA

- Base alg: fix **u**, try all **v** in $[v_0, v_0+L)$ until $p_j=(u^2+d_jv^2)/4$, and orders are prime for a curve E_j in our table (j < C)
- Idea: write p_j , curve and twist orders as polynomials in v (as below)
- We can quickly identify values of v such that p_j(v), ord_j(v) and ordT_j(v) are divisible by primes less than fixed bound B (therefore composite): avoid useless primality tests!

for each prime q<B
for j=0 to C-I (i.e., for each curve E_j in the table)
find roots of p_j(v), ord_j(v) and ordT_j(v) modulo q
for each root r

for each
$$i \equiv (r - v_0) \mod q$$
 and $0 \le i \le A[i] := "II...0_j$...I"

At the end bit-positions containing I are further inspected!

128-BIT SECURITY: TIMINGS

OS X 10.9.2, Intel Core i7-3820QM 2.7GHz

Android, Samsung Galaxy S4, Snapdragon 600 I.9GHz

Prime order				
Twist security	Basic	Sieve (B, V)		
No	0.009s	0.008s (100, 211)		
Yes	0.18s	0.05s (800, 2 ¹⁶)		

Prime order				
Twist security	Basic	Sieve (B,V)		
No	0.065s	0.053s (200, 2 ¹²)		
Yes	I.43s	0.39s (750, 2 ¹⁵)		

EPHEMERAL CURVE DH

- Exchange hash-commitments of random seeds
 Exchange seeds, XOR them to obtain shared seed
 OR
 - Use verifiable random beacon [LW15] to select shared seed (combined with identities, time, ...)

• Use shared seed to initialize generation process

CONCLUSION

- We described a method to generate real time ephemeral ECC parameters for ECDH
- Future (more choice of curves):
 Faster point counting for random curve generation?

THANKS FOR YOUR ATTENTION!