Authenticated Encryption and
Secure Channels —There and
Back Again

Information Security Group ROYAL
HOLLOWAY
UNIVERSITY

- :) OF LOT?__:‘

@kennyog; www.isg.rhul.ac.uk/~kp




Overview

* Secure channels and their properties

* AEAD —your local cryptographer’s abstraction
* AEAD # secure channel
* From AEAD to secure channels

* Are we there yet?




—

EIMINAN NN

BB &
Fo> <G> <G> <G> <G> <G> <Je> <S> <S> e
NN N DN N DN ON L ONLONY
P B L B8 BB B
> \ k e° 2 O
IN

RN
NCISCNCNCINEC S

SIS

Secure channels and their properties




Why do we need secure channels?

 Secure communications is the most common real-world
application of cryptography today.

* No, it's not MPC for sugar beet auctions!

* Secure channels are extremely widely-deployed in
practice:

e SSL/TLS, DTLS, IPsec, SSH, OpenVPN,...
« WEP/WPA/WPA2

* GSM/UMTS/LTE

* Cryptocat, OTR, SilentCircle

* OpenPGP, Telegram, Signal, and a thousand other
messaging apps

* QUIC, MinimalT, TCPcrypt




Security properties

» Confidentiality — privacy for data

* Integrity — detection of data modification

* Authenticity — assurance concerning the source of
data




Some less obvious security properties

* Anti-replay

* Detection that messages have been repeated

* Drop-detection

* Detection that messages have been deleted by the
adversary or dropped by the network.

* Prevention of re-ordering
* Preserving the relative order of messages in each direction.

* Preserving the relative order of messages sent and
received in both directions.

* Prevention of traffic-analysis.

* Using traffic padding and length-hiding techniques.




Possible functionality requirements

* Speedy

* Low-memory
* On-line/parallelisable crypto-operations

* Performance is heavily hardware-dependent.

* May have different algorithms for different platforms.

* IPR-friendly

* Thisissue has slowed down adoption of many
otherwise good algorithms, e.q. OCB.

* Easy to implement

* Without introducing any side-channels.




Additional requirements

e We need a clean and well-defined API

* Because the reality is that our secure channel protocol
will probably be used blindly by a security-naive
developer

* Developers want to "open” and “close” secure
channels, and issue “"send” and “recv” commands

* They'd like to simply replace TCP with a “secure TCP”
having the same API

* Ortojust have a blackbox for delivering messages
securely




Additional API-driven requirements

Does the channel provide a stream-based functionality or a
message-oriented functionality?

Does the channel accept messages of arbitrary length and perform
its own fragmentation and reassembly, or is there a maximum
message length?

How is error handling performed? Is a single error fatal, leading to
tear-down of channel, or is the channel tolerant of errors?

How are these errors signalled to the calling application? How
should the programmer handle them?

Does the secure channel itself handle retransmissions? Or is this left
to the application? Or is it guaranteed by the underlying network
transport?

Does the channel offer data compression?
These are design choices that all impact on security

They are not well-reflected in security definitions for symmetric
encryption



wjf N7 “‘557 \o7
LRSS
ettt
%” KK :?%#:4%%

SN *4"‘&3%

N SISO TIN I



Security for Symmetric Encryption

. Pictures by Giorgia Azzurra Marson
11




Security for Symmetric Encryption




Security for Symmetric Encryption

c,=Enc(m,)

m,=Dec(c,)




Security for Symmetric Encryption — Confidentiality

Enc Oracle

learn b in {o,1} from
c* =Enc¢(m,)

¢,=Ency(m,)

m,=Dec(c,)

IND-CPA
(Goldwasser-Micali, 1984;
Bellare-Desai-Jokipii-Rogaway, 1997).



Security for Symmetric Encryption — Confidentiality

Enc Oracle Dec Oracle

learn b in {o,1} from
c* =Enc¢(m,)

K
Cl
¢, = Enc(m,) > m, = Dec(c,)
m, = Dec,(c,) < = c,=Ency(m,)
IND-CPA IND-CCA
(Goldwasser-Micali, 1984; (Naor-Yung, 1990;
Bellare-Desai-Jokipii-Rogaway, 1997). Rackoff-Simon, 1997).



Security for Symmetric Encryption — Integrity

Is this what you wrote?




Security for Symmetric Encryption — Integrity

Enc Oracle Dec Oracle

¢,=Ency(m,)

m, = Dec,(c,)

m,=Dec(c,) ¢,=Ency(m,)

INT-CTXT
(Bellare, Rogaway, 2000)




Security for Symmetric Encryption — Integrity

Enc Oracle Dec Oracle

come up with valid c*
for a new m*

K
C, Ch
¢, = Enc(m,) > m, = Dec(c,)
m, = Dec,(c,) < = c,=Ency(m,)
INT-PTXT INT-CTXT
(Bellare-Namprempre, 2000) (Bellare, Rogaway, 2000)



Security for Symmetric Encryption — AE

Enc Oracle Dec Oracle

¢,=Ency(m,)

m, = Dec,(c,)

m,=Dec(c,) ¢,=Ency(m,)

Authenticated Encryption

INT-PTXT IND-CPA + INT-CTXT INT-CTXT
(Bellare-Namprempre, 2000) (IND-CCA) (Bellare, Rogaway, 2000)



Security for Symmetric Encryption — AEAD

Enc Oracle Dec Oracle

¢,=Enc (AD,,m.)

m, = Dec,(AD, c,)

m, = Dec(AD,,c,) ¢,=Enc(AD,,m,)

Authenticated Encryption with Associated Data
AE security for message m
Integrity for associated data AD
Strong binding between cand AD
(Rogaway 2002)




Security for Symmetric Encryption — stateful AEAD

Which came first?

c,=Enc (AD,,m,) m, = Dec,(AD, c,)

m, = Dec(AD,,c,) ¢,=Enc(AD,,m,)

m, = Dec(AD,,c,) ¢;= Ency (AD;,m,)




Security for Symmetric Encryption — stateful AEAD

Enc Oracle Dec Oracle

learn b in {o,1} from
c* =Enc¢(m,)

K
Cl
c,= Enc(AD,,m.) > m, = Decy(AD, c,)
m, = Dec(AD,,c,) Comm ¢,=Enc(AD,,m.,)
4
4
U4
m3 = DecK(AD3,C3) <€ Cg" ¥ C3= EI"ICK(AD3,m3)

IND-sfCCA

(Bellare-Kohno-Namprempre, 2002)



Security for Symmetric Encryption — stateful AEAD

Enc Oracle Dec Oracle

learn b in {o0,1} from c* =
Enc,(m,) or come up with

K valid/out of order c* K
c,=Enc (AD_,m)) = m, = Decy(AD, c,)
m, = Dec(AD,,c,) = ““)_ ¢,=Enc(AD,,m.,)
‘
m, = DecK(ADg,c3) < Cg ,/ C,= EncK(AD3,m3)

Stateful AEAD
IND-sfCCA INT-sfCTXT

(Bellare-Kohno-Namprempre, 2002)

N INT-sfPTXT
(Brzuska-Smart-Warinschi-Watson, 2013)



Security for Symmetric Encryption — nonce-based AEAD

Enc Oracle " Dec Oracle

¢,=Enc (N_,AD,,m,))

m, = Dec,(N,,AD, c,)

m,=Dec(N,,AD,,c,) c,=Enc(N,,AD, m,)

Nonce-based Authenticated Encryption with Associated Data
As per AEAD, but with additional input N to Enc and Dec algorithms
Adversary may arbitrarily specify N, but “no repeats” rule
Enc and Dec can now be stateless and deterministic

(Rogaway 2004)




Security for Symmetric Encryption — further notions

* LH-(stateful)AE(AD)

On top of everything else, ciphertexts provide a
modicum of hiding of plaintext lengths

cf variable length padding in SSL/TLS
Introduced by Paterson-Ristenpart-Shrimpton, 2011

Incorporated into ACCE framework by Jager-Kohlar-
Schage-Schwenk, 2012



CAESAR

* CAESAR: Competition for Authenticated Encryption:
Security, Applicability, and Robustness

Initiated by Dan Bernstein, supported by committee
of experts

Main goa
CAEASR

is the design of a portfolio of AE schemes
nas consumed hundreds of person-years of

effort and led to a major uptick in research activity

It seems that the cryptographic community has
settled on nonce-based AE/AEAD as their working
abstraction



o —

O
' 55

L ONLONYLONLLONLLONLONLONLONLONLO
> g g «g g g g» g g X
X XK
O I I I SN NN NN
BB LE
DEDE I SEISCIIEHEIE HE

<G

‘I/\‘I'—/.\

AEAD # secure channel

LONZONZ ONL ONLONLONLONL




AEAD # secure channel

* Recall our application developer:

°* He wants adrop-inreplacement for TCP that's secure

* Actually, he might just want to send and receive some
atomic messages and not a TCP-like stream

* To what extent does AEAD meet this requirement?

* |t doesn't...



AEAD # secure channel

Enc(,,.,.) 1 )C
+ p m,
Dec(,,.,.)

There's a significant semantic gap between AEAD’s functionality
and raw security guarantees, and all the things a developer
expects a secure channel to provide



The SSH debacle

Sequence Packet Pad
Number 4 Length 4| Len 1

e

Ciphertext MAC tag

Payload Padding o4

* Packet length field measures the size of the packet on the wire
* Encrypted to hide the true length of SSH packets

* Needsrandom IV for CBC-mode to prevent chaining attack

e Construction with random Vs was proven IND-sfCCA secure
(Bellare-Kohno-Namprempre, 2002)



Breaking SSH (Albrecht-Paterson-Watson, 2009)

v C,- \ Target ciphertext
| block from stream

dy

v

Length field

* Thereceiver will treat the first 32 bits of the calculated plaintext block
as the packet length field for the new packet

* Here:
P/ =IV® d(C*)
where IV is known



Breaking SSH (Albrecht-Paterson-Watson, 2009)

IV CI* R R ........
| |
dK dK dK
. > (D

v,
1] y J
e ; v

The attacker then feeds random blocks to the receiver

— One block at a time, waiting to see what happens at the server
when each new block is processed

— This is possible because SSH runs over TCP and tries to do online
processing of incoming blocks



Breaking SSH (Albrecht-Paterson-Watson, 2009)

v,
1] y J
e ; .

Once enough data has arrived, the receiver will receive what it thinks is
the MAC tag

— The MAC check will fail with overwhelming probability

— Consequently the connection is terminated (with an error message)

How much data is "enough” so that the receiver decides to check the
MAC?

Answer: whatever is specified in the length field .




Breaking SSH (Albrecht-Paterson-Watson, 2009)

v

Ci* Ci-1 *

* Knowing IV and 32 bits of P_, the attacker can now recover

* (Real attack s a bit more complicated, but follows this idea)

dy >

v,

32 bits of the target plaintext block:

P"'=C"®d(C)=C., " ®IVDOP,




SSH debacle lessons

* Model used for security proof was inadequate

* Itassumed length known and atomic processing of
ciphertexts

* Butfragmented adversarial delivery over TCP is possible

* Implementation can’t know if complete ciphertext has
arrived because of encrypted length field, unless it
decrypts first block.

* That's notin any of the AE/AEAD security models!
* And there’s no CAESAR requirement that looks like this!

* Modeling gap addressed in (Paterson-Watson, 2010) and
(Boldyreva-Degabriele-Paterson-Stam, 2012)



Second example: cookie cutters

Bhargavan, Delignat-Lavaud, Fournet, Pironti, Strub 2014: cookie
cutter attack on "HTTP over SSL/TLS”

* Attacker forces part of the HTTP header (e.g., cookie) to be cut
off

* Partial message/header arrives and might be misinterpreted

C= EnC(Set—Cookie: SID=[AuthenticationToken]; >s<e)

Set-Cookie: SID=[AuthenticationToken]




Cookie cutters

Why doesn’t this violate the proven integrity of SSL/TLS
encryption?

6.2.1. Fragmentation

The record layer fragments i1nformation blocks
into TLSPlaintext records [...]. Client
message boundaries are not preserved 1n the
record layer (i.e., multiple client messages
of the same ContentType MAY be coalesced 1nto
a single TLSPlaintext record, or a single
message MAY be fragmented across several
records) .

RFC 5246 TLS va.2



Cookie cutters

Why doesn’t this violate the proven integrity of SSL/TLS
encryption?

6.2.1. Fragmentation

The record layer fragments i1nformation blocks
into TLSPlaintext records [...]. Client
message boundaries are not preserved 1n the
record layer (i.e., multiple client messages
of the same ContentType MAY be coalesced 1nto
a single TLSPlaintext record, or a single
message MAY be fragmented across several
records) .

RFC 5246 TLS va.2



Cookie cutters

® S0 SSL/TLS can (and will) fragment when sending

* Compare to SSH that has to deal with fragments when
receiving

* Both protocols provide a streaming interface to
applications, not a message-oriented one

Ch Set-Cookie:

é::) Set-Cookie: Set- SID=[AuthToken];
)> SID=[AuthToken] Cookie: Me

secure
SID = ..

2 TLS records




Cookie cutters

* It's up to the calling application to deal with message boundaries if it
wants to use SSL/TLS for atomic message delivery

* Cookie cutter attack relies on a buggy browser that does not check
for correct HTTP message termination

* This happens in practice, presumably because developers do not
understand the interface provided by SSL/TLS

Ch Set-Cookie:

é::) Set-Cookie: Set- SID=[AuthToken];
)> SID=[AuthToken] Do Me

secure
SID = ..




TLS Record Protocol: MAC-Encode-Encrypt (MEE)

SQN || HDR Payload

| 2\
N

\ MACtag | Padding
| V\ |
SEOA

VAeS  HMAC-MDS5 C-SHA1, HMAC-SHA256

Payl/o/

DERGhBlM  CBC-AES128, CBC-AES256, CBC-3DES, RC4-128




-

. INOZONOLON Y NS
BB L LB BB

0 0 0
W ONS/NY/S
oao NN
e

O
0 o

ORI HN:
NN oo«ooo
AT AT
BB R RS
DE SN I DEISEIFEHE

! /\‘ {

From AEAD to secure channels




From AEAD to secure channels

® SSL/TLS is not alone in presenting a streaming
interface to applications

* Also SSH “tunnel mode”, QUIC
* What security can we hope for from such a channel?

* Boldyreva-Degabriele-Paterson- Stam (2012) already
treated the case where the receiver handles
fragmented ciphertexts

* In Fischlin-GUnther-Marson-Paterson (2015), we
provide a systematic study of the case where both
sender and receiver may fragment, asin TLS



Streaming secure channels (FGMPap5)

* Defining CCA and integrity notions in the full
streaming setting is non-trivial!

* Hard part is to define when adversary’s decryption queries
deviate from sent stream, and from which point on to
suppress decryption oracle outputs

* We develop streaming analogues of IND-CPA, IND-
CCA, INT-PTXT and INT-CTXT

* We recover an analogue of the classic relation
IND-CPA + INT-CTXT =» IND-CCA



Streaming secure channels (FGMPap5)

* We give a generic construction for a secure streaming channel that validates
the SSL/TLS design

* The construction uses AEAD as a component

* Security as streaming channel follows from standard AEAD security
properties

Enc C

segno




Streaming secure channels (FGMPap5)

* We give a generic construction for a secure streaming channel that validates
the SSL/TLS design

* The construction uses AEAD as a component

* Security as streaming channel follows from standard AEAD security

properties
m .
Enc len i 2'*"-1 bits len i 2len-1 bits | | len (< 2en-1 bits
seqno _ /‘ /‘
AEAD with AD = seqno remaining message on flush



Streaming secure channels (FGMPap5)

* We give a generic construction for a secure streaming channel that validates
the SSL/TLS design

* The construction uses AEAD as a component

* Security as streaming channel follows from standard AEAD security

properties
m
m .
Enc len §2'"-1bits | | len | 2'n-abits | | len (<21 bits Dec
seqno _ /‘ 7‘ seqno |
AEAD with AD = seqno remaining message on flush /‘

on AEAD failure

® TLS 1.3 hasunsent segno as AD and sent but unprotected length, but also
sent + protected version number and content type fields



f@¢&$»%¢¢%
SRR
IHAAON
RIS

. e N
Are we there yet?

V'A.‘vﬁvA ’\\/

R S S B SB R3




Are we there yet?

c,=Enc(m,)

m,=Dec(c,)




Context @

The Snowden revelations tell us that mass surveillance of
Internet traffic is taking place.

Just encrypting traffic is not enough to prevent mass
surveillance.
* Backdoors in cryptographic standards (e.g. NIST Dual EC DBRG).

» Extraction of server keys by legal means or by penetration of
target.

e Active attacks on PKI (certificate substitution).

* Backdoors in cryptographic software, exploiting timing, covert
channels, ....

* Other means as yet unknown.



Algorithm Substitution Attacks

Bellare-Paterson-Rogaway (2014):

What “other means” are possible for carrying out mass surveillance against encrypted
traffic, and what can we do to protect against them?

Our focus was narrow but carefully chosen:
Algorithm Substitution Attacks (ASAs) on Symmetric Encryption (SE).

Basic idea of ASAs: _
. Big Brother Adversary substitutes real encryption algorithm E with subverted one E.
. Ciphertexts generated by E and E look the same to ordinary users.
. But ciphertexts generated by E leak everything to Big Brother.

ASAs are a little-explored but realistic means of enabling mass surveillance.

* Informal treatments: Young-Yung (1996, 1997), Goh, Boneh, Pinkas, Golle (2003)



The setting for ASAs against Symmetric Encryption

- (BBispassive)
Normal BB

operation

C
C,0' €« E(K,M,AD,0)
Subverted C
operation @
- K~ K
C,0’' €« E(K,K,M,AD,o,i) BB M, T = D(K,C,AD,T)

o “Decryptability”
M, T" = D(K,C,AD, T,i)



Where do ASAs make sense?

® Closed-source software.

" Complex, open-source software not subject to
sufficient scrutiny (cf Heartbleed bug in OpenSSL).

® Backdoor in compiler an mount ASA at compile time

(as per Ken Thompson’s "Reflections on Trusting Trust”
pDaper).

Hardware implementation, especially tamper-evident/
oroof.




Modelling ASAs and security against them

* We gave formal definitions for SE secure against ASAs, using two
adversaries:

Detection Adversary: models ordinary users in possession of K but not K,
who wants to know if an ASA is underway.

Surveillance Adversary: models Big Brother in possession of K but not K,
who wants to read all users’ traffic.

* Security against ASAs:
Either Detection Adversary trivially succeeds

OR
Surveillance Adversary miserably fails.




ASAs against randomised schemes

* Any randomised, stateless SE scheme is vulnerable to an
undetectable ASA allowing Big Brother to efficiently recover

the encryption key K.

* Basicidea:

Let F:{o,1}*-> {0,1} be a PRF with key K.

To leak K[j], bit j of key K, algorithm E repeatedly encrypts using E and
fresh, random coins to produce C such that F(K,C,j) = K[j] .

BB is equipped with K so can efficiently recover bit K[j] from C.
User does not know K so cannot distinguish C from normal ciphertexts.

(Additional complexity needed to deal with different indices j and
different keys K..)

* Attack extends to randomised, stateful setting too.



Defeating ASAs

* Stateless, deterministic schemes can’t achieve semantic
security.

* But randomised schemes are now bad.

* Runs counter to our received wisdom on how to achieve semantic
security!

* We make use of a class of stateful, deterministic schemes,
namely unique ciphertext schemes:

For any key K, message M, associated data AD, and state T,
there is at most one ciphertext C that decrypts to M under K.



Defeating ASAs

Theorem:

Let M= (K,E,D) be a unique ciphertext scheme. Let 1 = (K,E,D) be
any subversion of I1 that is decryptable™.

Then any surveillance adversary B against 1 has zero advantage.

*ciphertexts generated by E decrypt correctly under D.



Defeating ASAs

* The preceding theorem is easy to instantiate.

* For example, start with a nonce-based symmetric encryption
scheme that is tidy in the sense of [NRS14].

* Setthe nonce N to be a counterin both E and D to make a
doubly stateful scheme.

* Easy to show that this scheme has unique ciphertexts.




The role of decryptability

* We have presented decryptability as a natural, minimal condition
required to make BB adversary undetectable.

* Decryptability and undetectability are actually incomparable notions.
Yp y y y p

* |f subversions E are allowed to deviate from decryptability, then it is
easy to design an undetectable E that leaks K.

* Special trigger message m* outputs K as ciphertext.

* And it may be hard to distinguish for the communicating partner to
distinguish such deviations from communications errors.

* Degabriele-Farshim-Poettering (2015) investigate and resolve this
Issue.



f@¢&$»%¢¢%
SRR
IHAAON
RIS

. e N
Closing remarks

V'A.‘vﬁvA ’\\/

R S S B SB R3




Closing remarks

* We've seen the evolution from simple security models
for symmetric encryption to more sophisticated
security notions for secure channels

* Yet the relevant part of the cryptography community
is mostly focussed on AEAD and CAESER

* Key take-away: think top-down, not bottom-up (from
APl to crypto, not the reverse)

* The post-Snowden adversary brings new and
interesting research challenges



Closing remarks




