Conclusion o

On the Provable Security of the Dragonfly protocol

Jean Lancrenon¹ Marjan Škrobot¹

¹Interdisciplinary Centre for Security, Reliability and Trust University of Luxembourg

ISC 2015

Dragonfly 000000 Results

Conclusion o

Outline

- 1. PAKEs
- 2. Dragonfly
- 3. Results
- 4. Conclusion

PAKEs
0000

Conclusion o

Intro

Password Authenticated Key Exchange

Results

Conclusion o

Intro

Password Authenticated Key Exchange

PAKE Problem:

Setup: Shared low-entropy secret (password)

Results

Conclusion o

Intro

Password Authenticated Key Exchange

- Setup: Shared low-entropy secret (password)
- Goal: High-entropy session key

Results

Conclusion o

Intro

Password Authenticated Key Exchange

- Setup: Shared low-entropy secret (password)
- Goal: High-entropy session key
- Without PKI

Results

Conclusion o

Intro

Password Authenticated Key Exchange

- Setup: Shared low-entropy secret (password)
- Goal: High-entropy session key
- Without PKI
- Only password for authentication

Results

Conclusion o

Intro

Password Authenticated Key Exchange

- Setup: Shared low-entropy secret (password)
- Goal: High-entropy session key
- Without PKI
- Only password for authentication
- Prevent offline-dictionary attacks

Results

Conclusion o

Intro

Password Authenticated Key Exchange

- Setup: Shared low-entropy secret (password)
- Goal: High-entropy session key
- Without PKI
- Only password for authentication
- Prevent offline-dictionary attacks
- Limit online-guessing attacks

PAKEs
0000

Conclusion o

Intro

Design Techniques

Typical approaches for designing efficient PAKEs in (ROM):

PAKEs	Dragonfly	Results	Conclusion
0000	000000	00000	0

Intro

Design Techniques

Typical approaches for designing efficient PAKEs in (ROM):

1. "EKE-style"

 $\xrightarrow{E_{pw}(g^x)} \xrightarrow{E_{pw}(g^y)}$

PAKEs	Dragonfly	Results	Conclusion
0000	000000	00000	0

Intro

Design Techniques

Typical approaches for designing efficient PAKEs in (ROM):

1. "EKE-style"

$$\xrightarrow{E_{pw}(g^x)} \xrightarrow{E_{pw}(g^y)}$$

2. "SPEKE-style"

$$\xrightarrow{(H(pw))^x} (H(pw))^y$$

PAKEs	Dragonfly	Results	Conclusion
0000	000000	00000	0

 $(D_2)^{ypw}, \pi_2$

Intro

Design Techniques

Typical approaches for designing efficient PAKEs in (ROM):

1. "EKE-style" $\xrightarrow{E_{pw}(g^x)} \xrightarrow{E_{pw}(g^y)}$ 2. "SPEKE-style" $(H(pw))^x$ $(H(pw))^y$ 3. "J-PAKE-style" $\underbrace{(D_1)^{xpw}, \pi_1}$

PAKEs
0000

Conclusion o

Security Models

Security Models for PAKE

PAKEs
0000

Conclusion o

Security Models

Security Models for PAKE

- 1. Indistinguishability-Based Model [BR93,95]
 - Find-then-Guess [BPR00]
 - Real-or-Random [AFP05]

PAKEs
0000

Conclusion o

Security Models

Security Models for PAKE

- 1. Indistinguishability-Based Model [BR93,95]
 - Find-then-Guess [BPR00]
 - Real-or-Random [AFP05]
- 2. Simulation-Based Model [S99]
 - Modified Shoup's model [BMP00]
 - Plain model PAKEs [GL01]

PAKEs
0000

Conclusion o

Security Models

Security Models for PAKE

- 1. Indistinguishability-Based Model [BR93,95]
 - Find-then-Guess [BPR00]
 - Real-or-Random [AFP05]
- 2. Simulation-Based Model [S99]
 - Modified Shoup's model [BMP00]
 - Plain model PAKEs [GL01]
- 3. Universal Composability Model [CK02]
 - UC for PAKE [CHKLM05]

PAKEs
0000

Conclusion o

Security Models

Security Models for PAKE

- 1. Indistinguishability-Based Model [BR93,95]
 - Find-then-Guess [BPR00]
 - Real-or-Random [AFP05]
- 2. Simulation-Based Model [S99]
 - Modified Shoup's model [BMP00]
 - Plain model PAKEs [GL01]
- 3. Universal Composability Model [CK02]
 - UC for PAKE [CHKLM05]

PAKEs	
0000	

Conclusion o

Indistinguishability-Based Model for PAKEs

Find-then-Guess BPR Model

Queries available to PPT adversary \mathcal{A} :

- Send (U^i, M) message exchange
- ▶ Execute(Cⁱ, S^j) eavesdropping
- **Reveal** (U^i) leakage of the session key
- Corrupt(U) leakage of the long term secret*
- Test(Uⁱ) semantic security of the session key

PAKEs	
0000	

Conclusion o

Indistinguishability-Based Model for PAKEs

Find-then-Guess BPR Model

Queries available to PPT adversary \mathcal{A} :

- Send (U^i, M) message exchange
- **Execute** (C^i, S^j) eavesdropping
- **Reveal** (U^i) leakage of the session key
- Corrupt(U) leakage of the long term secret*
- ▶ **Test**(Uⁱ) semantic security of the session key

What security means in BPR model?

PAKEs	
0000	

Conclusion o

Indistinguishability-Based Model for PAKEs

Find-then-Guess BPR Model

Queries available to PPT adversary \mathcal{A} :

- Send (U^i, M) message exchange
- **Execute** (C^i, S^j) eavesdropping
- **Reveal** (U^i) leakage of the session key
- Corrupt(U) leakage of the long term secret*
- Test(Uⁱ) semantic security of the session key

What security means in BPR model?

Definition

Protocol P is forward secure PAKE if for all PPT adversaries A making at most n_{se} online attempts, where N is the size of the dictionary and C is a constant

$$\operatorname{Adv}_{\operatorname{P}}^{ake}(\mathcal{A}) \leq \frac{C \cdot n_{se}}{N} + \varepsilon$$
 (1)

Dragonfly •00000 Results

Conclusion o

The Dragonfly Protocol

Motivation

Dragonfly ●00000 Results

Conclusion o

The Dragonfly Protocol

Motivation

- Submitted for standard in IETF (patent free)
 - Dragonfly PAKE
 - PSK (PWD) for IKE RFC 6617 (Experimental), 2012
 - EAP-PWD RFC 5931 (Informational), 2010
 - TLS-PWD

Dragonfly ●00000 Results

Conclusion o

The Dragonfly Protocol

Motivation

- Submitted for standard in IETF (patent free)
 - Dragonfly PAKE
 - PSK (PWD) for IKE RFC 6617 (Experimental), 2012
 - EAP-PWD RFC 5931 (Informational), 2010
 - TLS-PWD
- Fully symmetric (no strict roles)

Dragonfly ●00000 Results

Conclusion o

The Dragonfly Protocol

Motivation

- Submitted for standard in IETF (patent free)
 - Dragonfly PAKE
 - PSK (PWD) for IKE RFC 6617 (Experimental), 2012
 - EAP-PWD RFC 5931 (Informational), 2010
 - TLS-PWD
- Fully symmetric (no strict roles)
- Follows SPEKE design approach

Dragonfly ●00000 Results

Conclusion o

The Dragonfly Protocol

Motivation

- Submitted for standard in IETF (patent free)
 - Dragonfly PAKE
 - PSK (PWD) for IKE RFC 6617 (Experimental), 2012
 - EAP-PWD RFC 5931 (Informational), 2010
 - TLS-PWD
- Fully symmetric (no strict roles)
- Follows SPEKE design approach
- Without security proof

Dragonfly ●00000 Results

Conclusion o

The Dragonfly Protocol

Motivation

- Submitted for standard in IETF (patent free)
 - Dragonfly PAKE
 - PSK (PWD) for IKE RFC 6617 (Experimental), 2012
 - EAP-PWD RFC 5931 (Informational), 2010
 - TLS-PWD
- Fully symmetric (no strict roles)
- Follows SPEKE design approach
- Without security proof
- Stirred some controversy

PAKEs
0000

The Dragonfly Protocol

Dragonfly draft specifications

Client		Server
	Initialization	
Public: \mathbb{G} , p , q ; H_0, H_2 :	$\{0,1\}^* \to \{0,1\}^k;$	$H_1: \{0,1\}^* \to \{0,1\}^{2k};$
$\pi \in Passwords; seed := H$	$I_0(C, S, \pi, c)_{max,min}$	$_{n}; PW := H\&P(seed, l_{1}).$
$m_1, r_1 \leftarrow \mathbb{Z}_q$		$m_2, r_2 \leftarrow \mathbb{Z}_q$
$s_1 := r_1 + m_1$		$s_2 := r_2 + m_2$
$E_1 := PW^{-m_1}$		$E_2 := PW^{-m_2}$
	C, E_1, s_1	
	S, E_2, s_2	
abort if $\neg \text{Good}(E_2, s_2)$	•	abort if $\neg \text{Good}(E_1, s_1)$
$\sigma := (PW^{s_2} \times E_2)^{r_1}$		$\sigma := (PW^{s_1} \times E_1)^{r_2}$
$kck sk_C := H_1(\sigma, l_2)$		$kck sk_S := H_1(\sigma, l_2)$
$\kappa := H_2(kck, C, s_1, s_2, E_1, E_2)$		$\tau := H_2(kck, S, s_2, s_1, E_2, E_1)$
$\hat{\tau} := H_2(kck, S, s_2, s_1, E_2, E_1)$		$\hat{\kappa} := H_2(kck, C, s_1, s_2, E_1, E_2)$
	$\xrightarrow{\kappa}{\tau}$	
abort if $\tau \neq \hat{\tau}$	<u>،</u>	abort if $\kappa\neq\hat{\kappa}$

PAKEs
0000

Conclusion o

The Dragonfly Protocol

Dragonfly draft specifications

Client		Server
	Initialization	
Public: \mathbb{G} , p , q ; H_0, H_2 :	$\{0,1\}^* \to \{0,1\}^k;$	$H_1: \{0,1\}^* \to \{0,1\}^{2k};$
$\pi \in Passwords; seed := H$	$I_0(C, S, \pi, c)_{max,min}$	$_{n}; PW := H\&P(seed, l_{1}).$
$m_1, r_1 \leftarrow \mathbb{Z}_q$		$m_2, r_2 \leftarrow \mathbb{Z}_q$
$s_1 := r_1 + m_1$		$s_2 := r_2 + m_2$
$E_1 := PW^{-m_1}$		$E_2 := PW^{-m_2}$
	C, E_1, s_1	
	S, E_2, s_2	
abort if $\neg \text{Good}(E_2, s_2)$	4	abort if $\neg \text{Good}(E_1, s_1)$
$\sigma := (PW^{s_2} \times E_2)^{r_1}$		$\sigma := (PW^{s_1} \times E_1)^{r_2}$
$kck sk_C := H_1(\sigma, l_2)$		$kck sk_S := H_1(\sigma, l_2)$
$\kappa := H_2(kck, C, s_1, s_2, E_1, E_2)$		$\tau := H_2(kck, S, s_2, s_1, E_2, E_1)$
$\hat{\tau} := H_2(kck, S, s_2, s_1, E_2, E_1)$		$\hat{\kappa} := H_2(kck, C, s_1, s_2, E_1, E_2)$
	$\frac{\kappa}{\tau}$	
abort if $\tau \neq \hat{\tau}$	•	abort if $\kappa\neq\hat{\kappa}$

PAKEs	
0000	

Conclusion o

Provable Secure Dragonfly

Our Dragonfly

Client		Server
	Initialization	
Public: \mathbb{G} , p , q ; H_0 :	$\{0,1\}^* \to \mathbb{G}; H_1$	$: \{0,1\}^* \to \{0,1\}^{3k}$
$\pi \in Passu$	vords; $PW := H_0$	$(C, S, \pi).$
$m_1, r_1 \leftarrow \mathbb{Z}_q$		
$s_1 := r_1 + m_1$		
$E_1 := PW^{-m_1}$	C, E_1, s_1	
		abort if $\neg \text{Good}(E_1, s_1)$
		$m_2, r_2 \leftarrow \mathbb{Z}_q$
	0.5	$s_2 := r_2 + m_2$
	S, E_2, s_2	$E_2 := PW^{-m_2}$
abort if $\neg \text{Good}(E_2, s_2)$		
$\sigma := (PW^{s_2} \times E_2)^{r_1}$		
$tr := (C, S, s_1, s_2, E_1, E_2)$		
$\kappa \hat{\tau} sk_C := H_1(tr, \sigma, PW)$	<i>−κ</i>	
		$\sigma := (PW^{s_1} \times E_1)^{r_2}$
		$tr := (C, S, s_1, s_2, E_1, E_2)$
		$\hat{\kappa} \tau sk_S := H_1(tr, \sigma, PW)$
	<i>τ</i>	abort if $\kappa\neq\hat{\kappa}$
abort if $\sigma \neq \hat{\sigma}$		

abort if $\tau \neq \hat{\tau}$

Results

Conclusion o

Provable Secure Dragonfly

Our Dragonfly

Client		Server
	Initialization	
Public: $\mathbb{G}, p, q; H_0$:	$\{0,1\}^* \to \mathbb{G}; H_1$	$: \{0,1\}^* \to \{0,1\}^{3k}$
$\pi \in Passw$	$vords; PW := H_0$	$(C, S, \pi).$
$m_1, r_1 \leftarrow \mathbb{Z}_q$		
$s_1 := r_1 + m_1$		
$E_1 := PW^{-m_1}$	C, E_1, s_1	
		abort if $\neg \text{Good}(E_1, s_1)$
		$m_2, r_2 \leftarrow \mathbb{Z}_q$
	~ -	$s_2 := r_2 + m_2$
	S, E_2, s_2	$E_2 := PW^{-m_2}$
abort if $\neg \text{Good}(E_2, s_2)$		
$\sigma := (PW^{s_2} \times E_2)^{r_1}$		
$tr := (\mathbf{C}, \mathbf{S}, s_1, s_2, E_1, E_2)$		
$\kappa \hat{\tau} \mathbf{sk}_{\mathbf{C}} := H_1(tr, \sigma, \mathbf{PW})$	κ	
		$\sigma := (PW^{s_1} \times E_1)^{r_2}$
		$tr := (C, S, s_1, s_2, E_1, E_2)$
		$\hat{\kappa} \tau \mathbf{sk_S} := H_1(tr, \sigma, \mathbf{PW})$
	τ	abort if $\kappa \neq \hat{\kappa}$
al ant if a / â		

abort if $\tau\neq \hat{\tau}$

Conclusion o

Provable Secure Dragonfly

Differences between draft and proven variant

Differences:

- "Hunting-and-Pecking" procedure
- Session key computation (sid, PW)
- Confirmation codes (recipient's identity)
- Symmetric nature:
 - Ordered message exchange
 - Min/Max

PAKEs	Dragonfly	Results	Conclusion
0000	000000	00000	0

The proof of security for Dragonfly

The theorem statement

Theorem

We consider **Dragonfly** protocol, with a password set of size *N*. Let *A* be an adversary that runs in time at most *t*, and makes at most n_{se} **Send** queries, n_{ex} **Execute** queries, and n_{h0} and n_{h1} RO queries to H_0 and H_1 , resp. Then there exist two algorithms \mathcal{B} and \mathcal{D} running in time *t'* such that $Adv_{dragonfly}^{ake}(\mathcal{A}) \leq T$ where

$$T := \frac{6n_{se}}{N} + \frac{4(n_{se} + n_{ex})(2n_{se} + n_{ex} + n_{h1})}{q^2} + \frac{n_{h0}^2 + 2n_{h1}}{q} + \frac{n_{h1}^2 + 2n_{se}}{2^k} + 2n_{h1}(1 + n_{se}^2) \times Succ_{PW,\mathbb{G}}^{cdh}(\mathcal{B}) + 4n_{h0}^3 \times \left(\mathsf{Adv}_{g,\mathbb{G}}^{didh}(\mathcal{D}) + \frac{n_{h1}^3 + 3n_{se}}{q}\right)$$
(2)

and where $t' = O(t + (n_{se} + n_{ex} + n_{ro})t_{exp})$ with t_{exp} being a time required for exponentiation in \mathbb{G} .

PAKEs	Dragonfly	Results	
0000	000000	00000	
The proof of security for	Dragonfly		

Game hops

- G0: The Dragonfly protocol
- G1: Simulation game
- ▶ G2: Force uniqueness and avoid collisions on *H*₀

Conclusion

PAKEs		
0000		

Conclusion o

The proof of security for Dragonfly

Game hops

- G0: The Dragonfly protocol
- G1: Simulation game
- G2: Force uniqueness and avoid collisions on H₀
- G3: Force random oracle queries

PAKEs		
0000		

Conclusion o

The proof of security for Dragonfly

Game hops

- G0: The Dragonfly protocol
- G1: Simulation game
- ▶ G2: Force uniqueness and avoid collisions on *H*₀
- G3: Force random oracle queries
 - [a]: Randomize session key $H'_1(sid)$ (private oracles)

PAKEs		
0000		

Conclusion o

The proof of security for Dragonfly

- G0: The Dragonfly protocol
- G1: Simulation game
- ▶ G2: Force uniqueness and avoid collisions on *H*₀
- G3: Force random oracle queries
 - ▶ [a]: Randomize session key $H'_1(sid)$ (private oracles)
 - [b]: PW isn't used anymore (except if Corrupt query)

PAKEs	
0000	

Conclusion o

The proof of security for Dragonfly

- G0: The Dragonfly protocol
- G1: Simulation game
- ▶ G2: Force uniqueness and avoid collisions on *H*₀
- G3: Force random oracle queries
 - ▶ [a]: Randomize session key $H'_1(sid)$ (private oracles)
 - [b]: PW isn't used anymore (except if Corrupt query)
 - ▶ [c]: Avoid *lucky* guesses on *PW*

PAKEs	
0000	

Conclusion o

The proof of security for Dragonfly

- G0: The Dragonfly protocol
- G1: Simulation game
- ▶ G2: Force uniqueness and avoid collisions on *H*₀
- G3: Force random oracle queries
 - ▶ [a]: Randomize session key $H'_1(sid)$ (private oracles)
 - [b]: PW isn't used anymore (except if Corrupt query)
 - ▶ [c]: Avoid *lucky* guesses on *PW* (*A* has to query *H*₀)

PAKEs	
0000	

Conclusion o

The proof of security for Dragonfly

- G0: The Dragonfly protocol
- G1: Simulation game
- ▶ G2: Force uniqueness and avoid collisions on *H*₀
- G3: Force random oracle queries
 - ▶ [a]: Randomize session key $H'_1(sid)$ (private oracles)
 - [b]: PW isn't used anymore (except if Corrupt query)
 - ▶ [c]: Avoid *lucky* guesses on *PW* (*A* has to query *H*₀)
 - [d]: Avoid lucky guesses on authenticators

PAKEs	
0000	

Conclusion o

The proof of security for Dragonfly

- G0: The Dragonfly protocol
- G1: Simulation game
- ▶ G2: Force uniqueness and avoid collisions on *H*₀
- G3: Force random oracle queries
 - ▶ [a]: Randomize session key $H'_1(sid)$ (private oracles)
 - [b]: PW isn't used anymore (except if Corrupt query)
 - [c]: Avoid *lucky* guesses on PW (A has to query H_0)
 - ▶ [d]: Avoid *lucky* guesses on authenticators (*H*₁)

PAKEs	
0000	

Conclusion o

The proof of security for Dragonfly

Game hops

- G0: The Dragonfly protocol
- G1: Simulation game
- ▶ G2: Force uniqueness and avoid collisions on *H*₀
- G3: Force random oracle queries
 - ▶ [a]: Randomize session key $H'_1(sid)$ (private oracles)
 - [b]: PW isn't used anymore (except if Corrupt query)
 - [c]: Avoid *lucky* guesses on PW (A has to query H_0)
 - ▶ [d]: Avoid *lucky* guesses on authenticators (*H*₁)

AskH1₃ event:

 \mathcal{A} has to make "correct" combo of H_0 and H_1 queries to win.

PAKEs	Dragonfly	Results	Conclusion
0000	000000	0000	0

The proof of security for Dragonfly

We distinguish four disjoint sub-cases AskH1₃:

PAKEs	Dragonfly	Results	Conclusior
0000	000000	00000	0

The proof of security for Dragonfly

We distinguish four disjoint sub-cases AskH1₃:

AskH1-Passive₃ : transcript originates from honest execution

PAKEs	Dragonfly	Results	Conclusion
0000	000000	00000	0

The proof of security for Dragonfly

We distinguish four disjoint sub-cases AskH1₃:

AskH1-Passive₃:

transcript originates from honest execution

$\blacktriangleright \quad \textbf{AskH1-Paired}_3:$

 $((C, E_1, s_1), (S, E_2, s_2))$ comes from an honest execution, while (κ, τ) may come from A;

PAKEs	Dragonfly	Results	Conclusio
0000	000000	0000	0

The proof of security for Dragonfly

We distinguish four disjoint sub-cases AskH1₃:

- AskH1-Passive₃ : transcript originates from honest execution
- ► AskH1-Paired₃ :

 $((C, E_1, s_1), (S, E_2, s_2))$ comes from an honest execution, while (κ, τ) may come from A;

• AskH1-withC₃ : (S, E_2, s_2) is not from a matching S^j ;

PAKEs	Dragonfly	Results	Conclusio
0000	000000	00000	0

The proof of security for Dragonfly

We distinguish four disjoint sub-cases AskH1₃:

- AskH1-Passive₃ : transcript originates from honest execution
- ► AskH1-Paired₃ :

 $((C, E_1, s_1), (S, E_2, s_2))$ comes from an honest execution, while (κ, τ) may come from A;

- AskH1-withC₃ : (S, E_2, s_2) is not from a matching S^j ;
- AskH1-withS₃ : (C, E_1, s_1) is not from a matching C^i .

PAKEs	
0000	

Conclusion o

The proof of security for Dragonfly

The proof of security for Dragonfly

We distinguishing disjoint sub-cases AskH13:

- AskH1(Passug), transcript eriginates from honest execution
- ► AskH1-Paired₃ : $((C, E_1, s_1), (S, E_2, s_2))$ comes from an honest execution, while (κ, τ) may come from \mathcal{A} ;
- AskH1-withC₃ : (S, E_2, s_2) is not from a matching S^j ;
- AskH1-withS₃ : (C, E_1, s_1) is not from a matching C^i .

PAKEs	
0000	

Conclusion o

The proof of security for Dragonfly

The proof of security for Dragonfly

We distinguish your disjoint sub-cases AskH13:

- AskH1(Passure), transcrupture regionates from honest execution
- ► AskH1 Raired₃: (C, E₁, ...) f(S, E₂, P₂)) comes from an honest execution, while (∴ T) may come from A;
- AskH1-withC₃. (S, E_2, s_2) is not from a matching S^j ;
- AskH1-withS₃ : (C, E_1, s_1) is not from a matching C^i .

PAKEs	
0000	

Conclusion o

The proof of security for Dragonfly

The proof of security for Dragonfly

We distinguish your disjoint sub-cases AskH13:

 AskH1(Passure) transcrupt exiginates from honest execution

States and states

- ► AskH1 Raired₃. (C, E₁, s.) (6, E₂, P₂)) comes from an honest execution, while (s. τ) may come from A;
- Askin winc₃ (S, E_2, s_1) is not from a matching S^j ;
- As H1-with $D(C, E_1, s)$ is not from a matching C^i .

PAKEs	Dragonfly	Results	Conclusion
0000	000000	00000	0

Security Assumptions

DIDH assumption

Let $IDH_g(X, Y) = g^{1/(x+y)}$. An algorithm \mathcal{D} is a (t, ε) -DIDH solver if $\mathbf{Adv}_{g, \mathbb{G}}^{didh}(\mathcal{D})$

$$\begin{aligned} \mathsf{Adv}_{g,\mathbb{G}}^{didh}(\mathcal{D}) &:= \\ \Pr[x, y \leftarrow \mathbb{Z}_q^*, X \leftarrow g^{1/x}; Y \leftarrow g^{1/y}; Z \leftarrow IDH_g(X, Y) : \\ \mathcal{D}(X, Y, Z) &= 1] \\ -\Pr[x, y, z \in \mathbb{Z}_q^*, X \leftarrow g^{1/x}; Y \leftarrow g^{1/y}; Z \leftarrow g^{1/z} : \\ \mathcal{D}(X, Y, Z) &= 1] \end{aligned}$$

is bigger than negligible.

PAKEs	Dragonfly	Results
0000	000000	00000

Conclusion o

The proof of security for Dragonfly

The proof of security for Dragonfly

PAKEs	Dragonfly	Results
0000	000000	00000

Conclusion o

The proof of security for Dragonfly

The proof of security for Dragonfly

Reduction from DIDH:

D chooses 3 distinct random indexes

PAKEs	Dragonfly	Resul
0000	000000	0000

ults 0. Conclusion

The proof of security for Dragonfly

The proof of security for Dragonfly

- D chooses 3 distinct random indexes
- A triple $\langle X, Y, Z \rangle$ is "plugged" in H_0 outputs

PAKEs	Dragonfly	Results
0000	000000	00000

Conclusion

The proof of security for Dragonfly

The proof of security for Dragonfly

- D chooses 3 distinct random indexes
- A triple $\langle X, Y, Z \rangle$ is "plugged" in H_0 outputs
- $PW_1 := X^{u_1}, PW_2 := Y^{u_2}$, and $PW_3 := Z^{u_3}$

PAKEs	Dragonfly
0000	000000

Conclusion o

The proof of security for Dragonfly

The proof of security for Dragonfly

- D chooses 3 distinct random indexes
- A triple $\langle X, Y, Z \rangle$ is "plugged" in H_0 outputs
- $PW_1 := X^{u_1}, PW_2 := Y^{u_2}$, and $PW_3 := Z^{u_3}$
- Extract from H_1 queries: E_2^x , E_2^y , and E_2^z

PAKEs	Dragonfly
0000	000000

Conclusion o

The proof of security for Dragonfly

The proof of security for Dragonfly

- D chooses 3 distinct random indexes
- A triple $\langle X, Y, Z \rangle$ is "plugged" in H_0 outputs
- $PW_1 := X^{u_1}, PW_2 := Y^{u_2}$, and $PW_3 := Z^{u_3}$
- Extract from H_1 queries: E_2^x , E_2^y , and E_2^z
- $\blacktriangleright \mathcal{D} \text{ wins if } E_2{}^x E_2{}^y = E_2{}^z$

PAKEs	Dragonfly	Results
0000	000000	00000

Conclusion o

The proof of security for Dragonfly

The proof of security for Dragonfly

- D chooses 3 distinct random indexes
- A triple $\langle X, Y, Z \rangle$ is "plugged" in H_0 outputs
- $PW_1 := X^{u_1}, PW_2 := Y^{u_2}$, and $PW_3 := Z^{u_3}$
- Extract from H_1 queries: E_2^x , E_2^y , and E_2^z
- $\blacktriangleright \mathcal{D} \text{ wins if } E_2{}^x E_2{}^y = E_2{}^z$

$$\Pr[\operatorname{Coll}_{C}] \le 2n_{h0}^{3} \times \left(\operatorname{Adv}_{g,\mathbb{G}}^{didh}(\mathcal{D}) + \frac{n_{h1}^{3} + 3n_{se}}{2q}\right) \quad . \tag{3}$$

PAKEs	Dragonfly	Results
0000	000000	00000

Conclusion o

The proof of security for Dragonfly

The proof of security for Dragonfly

- D chooses 3 distinct random indexes
- A triple $\langle X, Y, Z \rangle$ is "plugged" in H_0 outputs
- $PW_1 := X^{u_1}, PW_2 := Y^{u_2}$, and $PW_3 := Z^{u_3}$
- Extract from H_1 queries: E_2^x , E_2^y , and E_2^z
- \mathcal{D} wins if $E_2{}^x E_2{}^y = E_2{}^z$

$$\Pr[\operatorname{Coll}_{C}] \leq 2n_{h0}^{3} \times \left(\operatorname{Adv}_{g,\mathbb{G}}^{didh}(\mathcal{D}) + \frac{n_{h1}^{3} + 3n_{se}}{2q}\right) \quad . \tag{3}$$
$$\Pr[\operatorname{AskH1-withC}_{4}] \leq \frac{2n_{se}}{N} \quad . \tag{4}$$

Dragonfly 000000 Results

Conclusion

Conclusion

Dragonfly 000000 Results

Conclusion

Conclusion

Summary of results

Forward secure in BRP model with ROM

Dragonfly 000000 Results

Conclusion

Conclusion

- Forward secure in BRP model with ROM
- Up to 2 password guesses per online attempt

Dragonfly 000000 Results

Conclusion

Conclusion

- Forward secure in BRP model with ROM
- Up to 2 password guesses per online attempt
- As secure as SPEKE protocol

Results

Conclusion

- Forward secure in BRP model with ROM
- Up to 2 password guesses per online attempt
- As secure as SPEKE protocol
- Slightly less efficient (4 exp vs. 4 exp + 2 mexp)

Results

Conclusion

- Forward secure in BRP model with ROM
- Up to 2 password guesses per online attempt
- As secure as SPEKE protocol
- Slightly less efficient (4 exp vs. 4 exp + 2 mexp)
- ▶ Recommendations: *sid* in *sk* and *ID* in authenticators.