Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion

Secure and Efficient Private Set Intersection Cardinality using Bloom Filter

Sumit Kumar Debnath and Ratna Dutta

Department of Mathematics Indian Institute of Technology Kharagpur-Kharagpur-721302, India

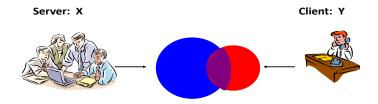
IIT Kharagpur

イロト イ押ト イヨト イヨト

Sumit Kumar Debnath and Ratna Dutta ISC 2015

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
Outline					

Sumit Kumar Debnath and Ratna Dutta ISC 2015



• At the end of the protocol, either one of them gets the intersection, yielding-one-way PSI, or both of them get the intersection yielding-mutual PSI (mPSI)

IIT Kharagpur

Sumit Kumar Debnath and Ratna Dutta ISC 2015

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
Private S	et Intersect	ion Cardin	ality(PSL)	(Δ)	

CAJ uniancy

This is a variant of PSI, where the participants wish to learn the cardinality of the intersection rather than the content.

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
Private 9	Set Intersect	ion (PSI)	Protocol		

The applications of PSI and PSI-CA protocols are as follows:

- Two real estate companies would like to identify customers (e.g., home owners) who are double-dealing, i.e., have signed exclusive contracts with both companies to assist them in selling their properties.
- Two different health organizations want to know the number of common villagers who are suffering from a particular disease in a village. None of the organizations will reveal their list of suspects but they may learn the number of common suspects by running an PSI-CA.

イロト イポト イヨト

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
Cryptogr	aphic Buildi	ng Blocks			

- Bloom Filter of [1]
- Homomorphic Encryption of [2]
- [1]: B. H. Bloom, Communications of the ACM 1970.

[2]: S. Goldwasser and S. Micali, Journal of computer and system sciences, 1984

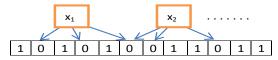
Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
Bloom F	Filter (BF)				

Bloom filter (BF) is a data structure that represents a set $X = \{x_1, ..., x_v\}$ of v elements by an array of m bits and uses k independent hash functions $H = \{h_0, h_1, ..., h_{k-1}\}$ with $h_i : \{0, 1\}^* \rightarrow \{0, 1, ..., m-1\}$ for i = 0, 1, ..., k-1. Bloom filter of X is denoted by BF_X

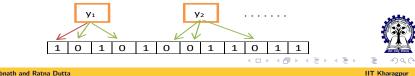
Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
Bloom F	Filter (BF)				

Choose m = 12 and k = 3. Initialization:

Add step: Suppose $(h_0(x_1) = 5, h_1(x_1) = 1, h_2(x_1) = 3)$, $(h_0(x_2) = 9, h_1(x_2) = 6, h_2(x_2) = 5)$



Check step: Suppose $(h_0(y_1) = 0, h_1(y_1) = 3, h_2(y_1) = 1)$, $(h_0(y_2) = 9, h_1(y_2) = 6, h_2(y_2) = 5)$



Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
Goldwas	ser-Micali (C	GM) Encry	ption		

This is a homomorphic encryption under the X-OR operation and consists the algorithms (KGen, Enc, Dec):

• $(pk = (n, u), sk = (P, Q)) \leftarrow \mathsf{KGen}(1^{\kappa})$, where n = PQ is an RSA modulus, $L(\frac{u}{P}) = -1$ and $L(\frac{u}{Q}) = -1$ but $J(\frac{u}{n}) = 1$.

• $c \leftarrow \operatorname{Enc}(m \in \{0, 1\}, pk)$, where

$$c = \operatorname{Enc}_{pk}(x) = egin{cases} r^2 \mod n ext{ if } m = 0 \ ur^2 \mod n ext{ if } m = 1 \end{cases}$$

• $m \leftarrow \text{Dec}(c, sk = (P, Q))$, where $L(\frac{c}{P}) = 1$ implies the decryptor outputs the message m as 0 else, the decryptor outputs the message m as 1.

IIT Kharagnu

・ロト ・ 四ト ・ ヨト ・ ヨト

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
-					

Quadratic Residuosity (QR) Assumption

Let X be the subgroup of \mathbb{Z}_n^* of elements having Jacobi symbol equal to 1. The QR assumption states that, given an *RSA* modulus *n* (without its factorization), it is computationally infeasible to distinguish a random element *u* of $X \subseteq \mathbb{Z}_n^*$ from an element of the subgroup $\{x^2 | x \in \mathbb{Z}_n^*\}$ of quadratic residues modulo *n* for every PPT algorithm \mathcal{A} .

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
PSI-CA	Protocol				

 $\begin{array}{l} C\text{'s private input} \\ Y = \{c_1, c_2, ..., c_w\} \subseteq \{0, 1\}^* \\ (pk_C, sk_C) \leftarrow \mathbf{KGen} \\ \text{constructs } BF_Y \\ \text{For } j = 0, 1, ..., m-1, \\ \text{computes } b_j = \mathsf{Enc}_{pk_C}(BF_Y[j]) \\ \overline{Y} = \{\mathsf{Enc}_{pk_C}(BF_Y[j])\}_{j=0}^{m-1} \end{array}$

$$\xrightarrow{\overline{Y}, pk_C}$$

 $\begin{array}{l} \mbox{Sets } card = 0 \\ \mbox{For } i = 1, 2, ..., v, \\ (i) \mbox{ for } j = 0, 1, ..., k-1, \\ \mbox{Dec}_{sk_C}(\mbox{Enc}_{pk_C}(\bar{s}_{i,j})) = \bar{s}_{i,j}, \\ (ii) \mbox{ if } \bar{s}_i \mbox{ is all-zero string} \\ \mbox{ then } card = card + 1. \\ \mbox{Outputs } card \mbox{ as } |X \cap Y| \end{array}$

ISC 2015

S's private input $X = \{s_1, s_2, ..., s_v\} \subseteq \{0, 1\}^*$

For i=1,2,...,v,

$$\begin{array}{l} \text{(i) for } j=0,1,...,k-1,\\ \text{(a) computes } h_j(s_i) \in \{0,1,...,m-1\},\\ \text{(b) extracts } b_{h_j(s_i)} \text{ from } \overline{Y},\\ \text{(ii) sets } E(\overline{s}_i) = \{b_{h_j(s_i)} \cdot r_{i,j}^2\}_{j=0}^{k-1},\\ \text{where } r_{i,0},...,r_{i,k-1} \leftarrow \mathbb{Z}_n.\\ \overline{X} = \{E(\overline{s}_i)\}_{i=1}^v \end{array}$$

イロト イポト イヨト イヨト

IIT Kharagpur

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
PSI-CA	Protocol co	ontd			

Correctness:
$$E(\bar{s}_i) = \{b_{h_0(s_i)} \cdot r_{i,0}^2 \mod n, ..., b_{h_{k-1}(s_i)} \cdot r_{i,k-1}^2 \mod n\}$$

 $= \{\operatorname{Enc}_{pk_C}(\operatorname{BF}_{Y}[h_0(s_i)]) \cdot \operatorname{Enc}_{pk_C}(0), ..., \operatorname{Enc}_{pk_C}(\operatorname{BF}_{Y}[h_{k-1}(s_i)]) \cdot \operatorname{Enc}_{pk_C}(0)\}$
 $= \{\operatorname{Enc}_{pk_C}(\operatorname{BF}_{Y}[h_0(s_i)]) \oplus 0), ..., \operatorname{Enc}_{pk_C}(\operatorname{BF}_{Y}[h_{k-1}(s_i)]) \oplus 0)\}$
 $= \{\operatorname{Enc}_{pk_C}(\operatorname{BF}_{Y}[h_0(s_i)]), ..., \operatorname{Enc}_{pk_C}(\operatorname{BF}_{Y}[h_{k-1}(s_i)])\}$
Therefore $\bar{s}_i = \{\operatorname{BF}_{Y}[h_0(s_i)], ..., \operatorname{BF}_{Y}[h_{k-1}(s_i)]\} \in \{0, 1\}^k$ for all $i = 1, 2, ..., v$.
Now it can be easily shown that $\bar{s}_i \in \{0, 1\}^k$ is a all-zero string if and only if $s_i \in X \cap Y$.

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
APSI-CA	A Protocol				

Off-line Phase:

$$C \qquad : \quad (pk_C, sk_C) \leftarrow \mathsf{KGen} \\ C \longrightarrow \mathsf{CA} \qquad : \quad Y = \{c_1, c_2, ..., c_w\}, pk_C$$

$\begin{array}{ll} \mathsf{CA} & : & \mathsf{Generates}\;(pk_{DSig}, sk_{DSig}) \leftarrow \mathsf{KGen}.DSig, \; \mathsf{constructs}\; BF_Y, \\ & \mathsf{sets}\; b_i = \mathsf{Enc}_{pk_C}(\mathsf{BF}_Y[i]) \; \mathsf{for}\; \mathsf{each}\; i = 0, 1, ..., m-1 \\ & \mathsf{and}\; \mathsf{computes}\; \Omega = \{Sig(b_0), ..., Sig(b_{m-1})\} \; \mathsf{using}\; sk_{DSig} \end{array}$

$$CA \longrightarrow C$$
 : $\overline{Y} = \{b_0, ..., b_{m-1}\}, \Omega, pk_{DSig}$

 $CA \longrightarrow S$: pk_{DSig}

◆□▶ ◆□▶ ◆目▶ ◆目▶

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
APSI-C	A Protocol				

Online Phase:

$$\begin{array}{ll} C\text{'s private input} \\ Y = \{c_1, c_2, ..., c_w\} \subseteq \{0, 1\}^* \\ \overline{Y} = \{b_0, ..., b_{m-1}\}, \\ \Omega = \{Sig(b_0), ..., Sig(b_{m-1})\} & \xrightarrow{\overline{Y}, pk_C}{\Omega} \end{array}$$

Sets
$$card = 0$$

For $i = 1, 2, ..., v$,
(i) for $j = 0, 1, ..., k - 1$,
 $Dec_{sk_C}(Enc_{pk_C}(\bar{s}_{i,j})) = \bar{s}_{i,j}$, $\langle \overline{X} \rangle$
(ii) if \bar{s}_i is all-zero string
then $card = card + 1$.
Outputs $card$ as $|X \cap Y|$

Sumit Kumar Debnath and Ratna Dutta ISC 2015 S 's private input $X = \{s_1, s_2, ..., s_v\} \subseteq \{0, 1\}^*$

Verifies Ω

If verification fails, then aborts
Otherwise, for
$$i = 1, 2, ..., v$$
,
(i) for $j = 0, 1, ..., k - 1$,
(a) computes $h_j(s_i) \in \{0, 1, ..., m - 1\}$,
(b) extracts $b_{h_j(s_i)}$ from \overline{Y} ,
(ii) sets $E(\bar{s}_i) = \{b_{h_j(s_i)} \cdot r_{i,j}^2\}_{j=0}^{k-1}$,
where $r_{i,0}, ..., r_{i,k-1} \leftarrow \mathbb{Z}_n$.
 $\overline{X} = \{E(\bar{s}_i)\}_{i=1}^v$

・ロト ・四ト ・ヨト ・ヨト

IIT Kharagpur

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
PSI Pro	otocol				

$$\begin{array}{l} C\text{'s private input} \\ Y = \{c_1, c_2, ..., c_w\} \subseteq \{0, 1\}^* \\ (pk_C, sk_C) \leftarrow \textbf{KGen} \\ \text{constructs } BF_Y \\ \text{For } j = 0, 1, ..., m-1, \\ \text{computes } \text{Enc}_{pk_C}(BF_Y[j]) \\ \overline{Y} = \{\text{Enc}_{pk_C}(BF_Y[j])\}_{j=0}^{m-1} \end{array}$$

$$\xrightarrow{\overline{Y},pk_C}$$

computes
$$\widetilde{Y} = \{\phi(c_i)\}_{i=1}^w$$

for $i = 1, 2, ..., v$,
(i) for $j = 0, 1, ..., k - 1$,
 $\mathsf{Dec}_{sk_C}(\mathsf{Enc}_{pk_C}(\bar{s}_{i,j})) = \bar{s}_{i,j}$
sets $\widehat{X} = \{\bar{s}_1, ..., \bar{s}_v\}$
outputs $\{c_i \in Y | \phi(c_i) \in \widehat{X}\}$
as $X \cap Y$

S's private input $X = \{s_1, s_2, ..., s_v\} \subseteq \{0, 1\}^*$

For i = 1, 2, ..., v,

$$\begin{array}{l} \text{(i) for } j = 0, 1, ..., k-1, \\ \text{(a) computes } h_j(s_i) \in \{0, 1, ..., m-1\}, \\ \text{(b) extracts } b_{h_j(s_i)} \text{from } \overline{Y}, \\ \text{(ii) generates } \text{Enc}_{pk_C}(s_{i,0}), ..., \text{Enc}_{pk_C}(s_{i,k-1}), \\ \text{where } s_{i,j} \text{ is } j\text{-th bit of } \phi(s_i) \in \{0, 1\}^k, \\ \text{(iii) sets } E(\bar{s}_i) = \{b_{h_j(s_i)} \cdot \text{Enc}_{pk_C}(s_{i,j})\}_{j=0}^{k-1} \\ \overline{X} = \{E(\bar{s}_i)\}_{i=1}^v \end{array}$$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
APSI	Protocol				

Online Phase:

$$\begin{array}{l} C's \text{ private input} \\ Y = \{c_1, c_2, ..., c_w\} \subseteq \{0, 1\}^* & \xrightarrow{\overline{Y}, pk_C} \\ & & \overbrace{\Omega} \end{array}$$
for $i = 1, 2, ..., v,$
(i) for $j = 0, 1, ..., k - 1,$

$$Dec_{sk_C}(\operatorname{Enc}_{pk_C}(\bar{s}_{i,j})) = \bar{s}_{i,j},$$
sets $\widehat{X} = \{\bar{s}_1, ..., \bar{s}_v\}$
outputs $\{c_i \in Y | c_i \in \widehat{X}\}$
as $X \cap Y$

S's private input $X = \{s_1, s_2, ..., s_v\} \subseteq \{0, 1\}^k$

 $\begin{array}{l} \text{Verifies } Sig(\bar{h}(b_{0}),...,\bar{h}(b_{m-1})).\\ \text{If verification fails, then aborts.}\\ \text{Otherwise, for } i=1,2,...,v,\\ (i) \text{ for } j=0,1,...,k-1,\\ (a) \text{ computes } h_{j}(s_{i}) \in \{0,1,...,m-1\},\\ (b) \text{ extracts } b_{h_{j}(s_{i})}\text{ from }\overline{Y},\\ (ii) \text{ generates } \text{Enc}_{pk_{C}}(s_{i,0}),...,\text{Enc}_{pk_{C}}(s_{i,k-1}),\\ \text{ where } s_{i,j} \text{ is } j\text{-th bit of } s_{i} \in \{0,1\}^{k},\\ (iii) \text{ sets } E(\bar{s}_{i}) = \{b_{h_{j}(s_{i})} \cdot \text{Enc}_{pk_{C}}(s_{i,j})\}_{j=0}^{k-1},\\ \overline{X} = \{E(\bar{s}_{i})\}_{i=1}^{v} \end{array}$

イロト イポト イヨト イヨト

Sumit Kumar Debnath and Ratna Dutta

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
Security					

The security definition is based on a comparison between the ideal model and real model.

Security Requirements

- **Privacy:** Each party should learn whatever prescribed in the protocol, not more than that.
- **Correctness:** At the end of interaction, each party should receive correct output.

Image: A matrix and a matrix

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
Theoren	ns				

Theorem

If the quadratic residuosity assumption holds, then PSI-CA protocol is a secure computation protocol for functionality $\mathcal{F}_{card} : (Y, X) \longrightarrow (|X \cap Y|, \bot)$ in the standard model against semi-honest semi-honest client except with negligible probability $\frac{1}{2^k}$, where $Y = \{c_1, c_2, ..., c_w\} \subseteq \{0, 1\}^*$ and $X = \{s_1, s_2, ..., s_v\} \subseteq \{0, 1\}^*$ with $w \leq v$.

IIT Kharagpur

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion

- APSI-CA is secure in the standard model against semi-honest server and malicious client except with negligible probability ϵ under QR assumption.
- PSI is secure in the standard model against semi-honest server and semi-honest client except with negligible probability ϵ under QR assumption.
- APSI is secure in the standard model against malicious server and malicious client except with negligible probability ϵ under QR assumption.

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
Efficienc	у				

Table: Comparison of PSI-CA and APSI-CA protocols

PSI-CA	Security	Adv.	Security	Comm.	Comp.	Based	Size
Protocol	model	model	assumption			on	hiding
Sch. 1	ROM	SH	DDH and	O(w + v)	O(w + v)		no
of [1]			GOMDH				
Sch. 2	ROM	MS,	GOMDH	O(w + v)	O(w+v)		no
of [1]		SHC					
Our	Std	SH	QR	O(w + v)	O(w+v)	BF	yes
APSI-CA	Security	Adv.	Security	Comm.	Comp.	Based	Size
Protocol	model	model	assumption			on	hiding
[2]	Std	Mal	Strong RSA	O(wv)	O(wv)	OPE	no
[1]	ROM	SH	GOMDH	O(w+v)	O(w+v)		no
Our	Std	MC,	QR	O(w+v)	O(w+v)	BF	yes
		SHS					

E. De Cristofaro, P. Gasti, and G. Tsudik, In Cryptology and Network Security 2012.
 J. Camenisch and G. M. Zaverucha, In Financial Cryptography and Data Security 2009.

・ロト ・回ト ・モト ・モト

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
Conclusi	ion				

- We have presented efficient constructions for PSI-CA, APSI-CA, PSI and APSI protocols with linear complexities based on Bloom filter and homomorphic GM encryption.
- In our protocols, client's input set size need not be revealed to the server.
- Proposed PSI-CA and APSI-CA are the *first* cardinality set intersection protocols secure in *standard model* with *linear complexity* and preserving client's input set size *independency*.

IIT Kharagnu

Image: A marked black

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion

Sumit Kumar Debnath and Ratna Dutta ISC 2015 IIT Kharagpur

E

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

Introduction	Preliminaries	Protocol	Security	Efficiency	Conclusion
_					

For any query mail at sd.iitkgp@gmail.com

590