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Motivation

Attribute-based encryption (ABE) has been extensively deployed to re-
alize complex access control functionalities in cloud environment.
Two crucial requirements of ABE systems are:
(i) Expressiveness of the supported decryption policies
(ii) User revocation
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Motivation

While [GGH+13b], [BGG+14] presented ABE for arbitrary polynomial-
size Boolean circuits of unbounded fan-out, they do not support revoca-
tion.
In all the existing revocable ABE (RABE) systems the decryption policies
were restricted to circuits of fan-out one, paving the way for a “back-
tracking” attack.

[BGG+14]: Dan Boneh et al. In Advances in Cryptology–EUROCRYPT 2014.
[GGH+13b]: Sanjam Garg et al. In Advances in Cryptology–CRYPTO 2013.
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Advantage of Direct Revocation in ABE

The direct revocation technique controls revocation by specifying a re-
vocation list directly during encryption.
This method does not involve any additional proxy server or key update
phase.
Consequently, the non-revoked users remain unaffected and revocation
can take effect instantly without requiring to wait for the expiration of
the current time period.
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Drawback of the Tree-Based Revocation Technique of
Naor et al.

All currently available standard model RABE constructions supporting
direct revocation mode follow the tree-based revocation mechanism of
Naor et al. [NNL01].
Consequently, the number of revocation controlling components in ci-
phertexts and decryption keys are O(r̂ log Nmax

r̂
) and O(logNmax) re-

spectively.
Nmax is the maximum number of users supported by the system and r̂
is the number of revoked users.

[NNL01]: Dalit Naor et al. In Advances in Cryptology–CRYPTO 2001.
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Highlights of Our Work

We apply the revocation technique introduced in [BGW05] and its im-
proved variant [BWZ14] in the ABE setting.
We propose two direct RABE schemes:

RABE-I: first to support general circuits and to feature constant number
of revocation enforcing components in ciphertexts and decryption keys but
public parameter size is linear to Nmax.
RABE-II: achieves similar properties with public parameter size logarithmic
to Nmax.

[BGW05]: Dan Boneh et al. In Advances in Cryptology–CRYPTO 2005.
[BWZ14]: Dan Boneh et al. In Advances in Cryptology–CRYPTO 2014.
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Multilinear Map

A (leveled) multilinear map consists of the following two algorithms:
i GMLM(1λ, κ) → PPMLM = ( #»G = (G1, . . . ,Gκ), g1, . . . , gκ) where Gi’s

are groups each of prime order p > 2λ, gi ∈ Gi are canonical generators.
ii ei,j(g ∈ Gi, h ∈ Gj)→ v ∈ Gi+j (for i, j ∈ {1, . . . , κ}, i+ j ≤ κ) such

that
ei,j(gai , gbj) = gabi+j

for a, b ∈ Zp. We can also generalize e to multiple inputs as
e(χ(1), . . . , χ(t)) = e(χ(1), e(χ(2), . . . , χ(t))).
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Circuit Notation

We consider monotone and layered circuits with OR and AND gates
having fan-in two.
A circuit f = (`, q, d,A,B,GateType).
Here, `, q, and d respectively denote the length of the input, the number
of gates, and depth of the circuit.
Input = {1, . . . , `}, Gates = {` + 1, . . . , ` + q}, W = Input ∪ Gates,
and `+ q = the output wire.
A,B : gates → W\{` + q} are functions such that for all w ∈ Gates,
A(w) and B(w) respectively identify w’s first and second incoming wires.
We consider w > B(w) > A(w).
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Circuit Notation

GateType : Gates → {AND,OR} defines a functions that identifies a
gate as either an AND or an OR gate.
depth : W → {1, . . . , d} is a function such that depth(w) = 1, if
w ∈ Input, and depth(w) = one plus the length of the shortest path
from w to an input wire, otherwise. Since our circuit is layered, for all
w ∈ Gates,

depth(A(w)) = depth(B(w)) = depth(w)− 1.

f(x) = evaluation of the circuit f on input x ∈ {0, 1}`, and fw(x) =
value of wire w of f on x.
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RABE-I
RABE.Setup(1λ, `, d, Nmax)

1 GMLM(1λ, κ = `+ d+ 1)→ PPMLM =
( #»G = (G1, . . . ,Gκ), g1, . . . , gκ

)
.

2 Ai,β = g
ai,β
1 for i = 1, . . . , `; β ∈ {0, 1}, where (a1,0, a1,1), . . . , (a`,0, a`,1)

∈$ Z2
p.

3 ϑj = gα
(j)

1 for j = 1, . . . , Nmax, Nmax + 2, . . . , 2Nmax, Y = gγ1 ,

Z = gθd−1, Ω = gα
(Nmax+1)θ

d+1 , where α, γ, θ ∈$ Zp.
4 Publish PP =

(
PPMLM, {Ai,β}i=1,...,`;β∈{0,1},

{ϑj}j=1,...,Nmax,Nmax+2,...,2Nmax , Y, Z,Ω
)
along with UL = ∅ while keep

MK = (α, γ, θ).
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RABE-I
RABE.KeyGen(PP, MK, UL, ID, f = (`, q, d,A,B, GateType))

1 Assign u ∈ N = {1, . . . , Nmax} such that (·, u) /∈ UL to ID, update
UL = UL ∪ {(ID, u)}.

2 r1, . . . , r`+q ∈$ Zp.

3 K = g
α(u)θγ−r`+q
d .
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RABE-I
RABE.KeyGen(PP, MK, UL, ID, f = (`, q, d,A,B, GateType))

4 Generate key components for every wire w as follows:
Input wire: Kw = e(Aw,1, g1)rw = g

rwaw,1
2 .

OR gate: Let t = depth(w). µw, νw ∈$ Zp,
Kw =

(
Kw,1 = gµw1 ,Kw,2 = gνw1 ,Kw,3 = g

rw−µwrA(w)
t ,Kw,4 = g

rw−νwrB(w)
t

)
.

AND gate: Let t = depth(w). µw, νw ∈$ Zp,
Kw =

(
Kw,1 = gµw1 ,Kw,2 = gνw1 ,Kw,3 = g

rw−µwrA(w)−νwrB(w)
t

)
.

5 Give SKf,ID =
(
f, ID,K, {Kw}w∈{1,...,`+q}

)
to the user.
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RABE-I
RABE.Encrypt(PP, UL, x = x1 . . . x` ∈ {0, 1}`, RL, M ∈ Gκ)

1 Define RI ⊆ N corresponding to RL using UL, i.e., if ID ∈ RL and
(ID, j) ∈ UL include j in RI. Determine SI = N\RI.

2 s ∈$ Zp,

CM = e(Ω, A1,x1 , . . . , A`,x`)
sM = gα

(Nmax+1)θsδ(x)
κ M,

C = gs1, C
′ =

(
Y
∏
j∈SI

ϑNmax+1−j
)s =

(
gγ1
∏
j∈SI

gα
(Nmax+1−j)

1
)s
,

where δ(x) =
∏`
i=1 ai,xi .

3 Output CTx,RL = (x,RL, CM , C, C ′).
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RABE-I
RABE.Decrypt(PP, UL, CTx,RL, SKf,ID)

1 Output ⊥, if [f(x) = 0] ∨ [ID ∈ RL]; otherwise, proceed to the next
step.

2 D = e(A1,x1 , . . . , A`,x`) = g
δ(x)
` ,

Ê = e(K, D,C) = g
(α(u)θγ−r`+q)sδ(x)
κ .
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RABE-I
RABE.Decrypt(PP, UL, CTx,RL, SKf,ID)

3 Perform the bottom-up evaluation of the circuit. For every wire w with
corresponding depth(w) = t, if fw(x) = 0, compute nothing, otherwise,
compute Ew = g

rwsδ(x)
`+t+1 as follows:

Input wire:
Ew = e(Kw, A1,x1 , . . . , Aw−1,xw−1 , Aw+1,xw+1 , . . . , A`,x` , C) = g

rwsδ(x)
`+1+1 .

OR gate: If fA(w)(x) = 1,

Ew = e(EA(w),Kw,1)e(Kw,3, D,C) = g
rwsδ(x)
`+t+1 .

Alternatively, if fA(w)(x) = 0 and hence fB(w)(x) = 1,

Ew = e(EB(w),Kw,2)e(Kw,4, D,C) = g
rwsδ(x)
`+t+1 .

AND gate: Certainly fA(w)(x) = fB(w)(x) = 1.

Ew = e(EA(w),Kw,1)e(EB(w),Kw,2)e(Kw,3, D,C) = g
rwsδ(x)
`+t+1 .

Finally, E`+q = g
r`+qsδ(x)
κ , as f(x) = f`+q(x) = 1.
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RABE-I
RABE.Decrypt(PP, UL, CTx,RL, SKf,ID)

4 Determine RI ⊆ N corresponding to RL using UL and obtain SI = N\RI.
Since ID /∈ RL, u ∈ SI.

5 Retrieve the message by the following computation:

CM ÊE`+qe
( ∏
j∈SI\{u}

ϑNmax+1−j+u, Z,D,C
)
e
(
ϑu, Z,D,C

′)−1

= gα
(Nmax+1)θsδ(x)

κ M · g(α(u)θγ−r`+q)sδ(x)
κ · gr`+qsδ(x)

κ ·∏
j∈SI\{u}

gα
(Nmax+1−j+u)θsδ(x)

κ ·
[
gα

(u)θγsδ(x)
κ ·

gα
(Nmax+1)θsδ(x)

κ ·
∏

j∈SI\{u}
gα

(Nmax+1−j+u)θsδ(x)
κ

]−1

= M.
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RABE-II
RABE.Setup(1λ, `, d, Nmax)

1 Choose two positive integers n,m suitably such that Nmax ≤
(n
m

)
.

N = {j ∈ {1, . . . , 2n − 2} | HW(j) = m}.
2 GMLM(1λ, κ = n+d+m−1)→ PPMLM =

( #»G = (G1, . . . ,Gκ), g1, . . . , gκ
)
.

3 Ai = gaim for i = 1, . . . , ` where a1, . . . , a` ∈$ Zp.
4 ξι = gα

(2ι)
1 for ι = 0, . . . , n, Y = gγn−1, Z = gθd, Ω = gα

(2n−1)θ
κ , where

α, γ, θ ∈$ Zp.
5 Keep MK = (α, γ, θ) while publish PP =

(
PPMLM, n,m, {Ai}i=1,...,`,

{ξι}ι=0,...,n, Y, Z,Ω
)
along with UL = ∅.
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RABE-II
RABE.KeyGen(PP, MK, UL, ID, f = (`, q, d,A,B, GateType))

1 Assign to ID u ∈ N such that (·, u) /∈ UL, update UL = UL ∪ {(ID, u)}.
2 r1, . . . , r`+q ∈$ Zp.

3 K = g
α(u)θγ−r`+q
n+d−1 .

Pratish Datta (ISC 2015) General Circuit Realizing Compact RABE 9–11th September, 2015 17



Introduction Preliminaries Our RABE Constructions Security Efficiency Conclusion

RABE-II
RABE.KeyGen(PP, MK, UL, ID, f = (`, q, d,A,B, GateType))

4 Form key components for every wire w as follows:
Input wire: zw ∈$ Zp,

Kw =
(
Kw,1 = grwn e(Aw, gn−m)zw = grwn gawzwn , Kw,2 = g−zwn

)
.

OR gate: Let t = depth(w). µw, νw ∈$ Zp,
Kw =

(
Kw,1 = gµw1 ,Kw,2 = gνw1 ,Kw,3 = g

rw−µwrA(w)
n+t−1 ,Kw,4 = g

rw−νwrB(w)
n+t−1

)
.

AND gate: Let t = depth(w). µw, νw ∈$ Zp,
Kw =

(
Kw,1 = gµw1 ,Kw,2 = gνw1 ,Kw,3 = g

rw−µwrA(w)−νwrB(w)
n+t−1

)
.

5 Hand SKf,ID =
(
f, ID,K, {Kw}w∈{1,...,`+q}

)
to the user.
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RABE-II
RABE.Encrypt(PP, UL, x = x1 . . . x` ∈ {0, 1}`, RL, M ∈ Gκ)

1 Define RI ⊆ N corresponding to RL using UL and set SI = N\RI.
2 Compute ϑ2n−1−j for all j ∈ SI as follows, where ϑ$ = gα

($)
n−1 for positive

integer $. For any j ∈ SI ⊆ N , j =
∑
ι∈J 2ι where J ⊆ {0, . . . , n− 1},

|J | = m. Thus, 2n − 1 − j =
∑
ι∈J 2ι where J = {0, . . . , n − 1}\J =

{ι1, . . . , ιn−m} (say). So,

ϑ2n−1−j = e(ξι1 , . . . , ξιn−m , gm−1) = gα
(2n−1−j)

n−1 .
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RABE-II
RABE.Encrypt(PP, UL, x = x1 . . . x` ∈ {0, 1}`, RL, M ∈ Gκ)

3 s ∈$ Zp,

CM = ΩsM = gα
(2n−1)θs

κ M, C = gsm,

C ′i = Asi = gaism for i ∈ Sx = {i|i ∈ {1, . . . , `} ∧ xi = 1},

C ′′ =
(
Y
∏
j∈SI

ϑ2n−1−j
)s =

(
gγn−1

∏
j∈SI

gα
(2n−1−j)

n−1
)s
.

4 Output CTx,RL = (x,RL, CM , C, {C ′i}i∈Sx , C ′′).
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RABE-II
RABE.Decrypt(PP, UL, CTx,RL, SKf,ID)

1 Output ⊥, if [f(x) = 0]∨ [ID ∈ RL]; otherwise, proceed to the next step.
2 Ê = e(K, C) = e

(
g
α(u)θγ−r`+q
n+d−1 , gsm

)
= g

(α(u)θγ−r`+q)s
κ .
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RABE-II
RABE.Decrypt(PP, UL, CTx,RL, SKf,ID)

3 Perform the bottom-up evaluation of the circuit. For every wire w with
corresponding depth(w) = t, if fw(x) = 0, compute nothing, otherwise,
compute Ew = grwsn+t+m−1 as follows:

Input wire:

Ew = e(Kw,1, C)e(Kw,2, C
′
w) = grwsn+m = grwsn+1+m−1.

OR gate: If fA(w)(x) = 1,

Ew = e(EA(w),Kw,1)e(Kw,3, C) = grwsn+t+m−1.

Alternatively, if fA(w)(x) = 0 and hence fB(w)(x) = 1,

Ew = e(EB(w),Kw,2)e(Kw,4, C) = grwsn+t+m−1.

AND gate: Certainly fA(w)(x) = fB(w)(x) = 1.

Ew = e(EA(w),Kw,1)e(EB(w),Kw,2)e(Kw,3, C) = grwsn+t+m−1.

Finally, E`+q = g
r`+qs
κ , as f(x) = f`+q(x) = 1.
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RABE-II
RABE.Decrypt(PP, UL, CTx,RL, SKf,ID)

4 Determine RI ⊆ N corresponding to RL using UL and obtain SI = N\RI.
As ID /∈ RL, u ∈ SI.

5 Compute ϑ′u = gα
(u)

m and ϑ2n−1−j+u = gα
(2n−1−j+u)

n−1 for all j ∈ SI\{u}
as follows:
(a) (Computing ϑ′u) As u ∈ SI ⊆ N , u =

∑
ι∈U 2ι where U = {ι′1, . . . , ι′m} ⊆

{0, . . . , n− 1} (say). So, ϑ′u = e(ξι′1 , . . . , ξι′m) = gα
(u)

m .
(b) (Computing ϑ2n−1−j+u for j ∈ SI\{u}) 2n − 1 − j =

∑
ι∈J 2ι where

J = {ι1, . . . , ιn−m} ⊆ {0, . . . , n − 1}. U ∩ J = ∅ only if j = u. Since
j 6= u, ∃ι̂ ∈ J ∩ U . ι̂ = ιn−m = ι′m (say). Then, 2n − 1 − j + u =∑
ι∈J\{̂ι} 2ι +

∑
ι∈U\{̂ι} 2ι + 2̂ι+1. So,

ϑ2n−1−j+u = e(ξι1 , . . . , ξιn−m−1 , ξι′1 , . . . , ξι′m−1
, ξ̂
ι+1) = gα

(2n−1−j+u)

n−1 .
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RABE-II
RABE.Decrypt(PP, UL, CTx,RL, SKf,ID)

6 Retrieve the message by the following computation:

CM ÊE`+qe
( ∏
j∈SI\{u}

ϑ2n−1−j+u, Z, C
)
e
(
ϑ′u, Z, C

′′)−1

= gα
(2n−1)θs

κ M · g(α(u)θγ−r`+q)s
κ · gr`+qsκ ·

∏
j∈SI\{u}

gα
(2n−1−j+u)θs

κ ·

[
gα

(u)θγs
κ · gα(2n−1)θs

κ ·
∏

j∈SI\{u}
gα

(2n−1−j+u)θs
κ

]−1

= M.
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Security Statements

Theorem (RABE-I)
RABE-I is secure in the selective revocation list model against CPA if the
(`+d+1, Nmax)-MDHE assumption holds for the underlying multilinear
group generator GMLM.
`, d, andNmax denote respectively the input length of decryption circuits,
depth of the decryption circuits, and the maximum number of users
supported by the system.

Theorem (RABE-II)
RABE-II is secure in the selective revocation list model against CPA if
the (n, d,m)-cMDHE assumption holds for the underlying multilinear
group generator GMLM.
n,m are two integers for which Nmax ≤

(n
m

)
.
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Multilinear Diffie-Hellman Exponent Assumption:
(κ,N)-MDHE

It is hard to guess b̃ ∈ {0, 1} given %̃
b
← G(κ,N)-MDHE

b̃
(1λ).

G(κ,N)-MDHE
b̃

(1λ):

GMLM(1λ, κ)→ PPMLM;
α, ς, ψ1, . . . , ψκ−2 ∈$ Zp;
ϑj = gα

(j)

1 for j = 1, . . . , N,N + 2, . . . , 2N,Υ = gς1, τi = gψi1 for i =
1, . . . , κ− 2;

<0 = g
α(N+1)ς

∏κ−2
i=1

ψi
κ , <1= some random element in Gκ;

%̃
b

= (PPMLM, ϑ1, . . . , ϑN , ϑN+2, . . . , ϑ2N , Υ, τ1, . . . , τκ−2,<b̃).
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Compressed Multilinear Diffie-Hellman Exponent
Assumption: (n, k, l)-cMDHE

It is hard to guess b̃ ∈ {0, 1} given %̃
b
← G(n,k,l)-cMDHE

b̃
(1λ).

G(n,k,l)-cMDHE
b̃

(1λ):

GMLM(1λ, κ = n+ k + l − 1)→ PPMLM;
α, ς, ψ1, . . . , ψk ∈$ Zp;
ξι = gα

(2ι)

1 for ι = 0, . . . , n, τh = gψh1 for h = 1, . . . , k, Υ = gςl ;

<0 = g
α(2n−1)ς

∏k

h=1
ψh

κ , <1= some random element of Gκ;
%̃
b

= (PPMLM, ξ0, . . . , ξn, τ1, . . . , τk,Υ,<b̃).
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Complexity Analysis
Communication and Storage

RABE-I:
only 3 group elements in the ciphertexts.
number of decryption key components `+ 4q + 1 in the worst case.
the number of PP components linear to Nmax.

RABE-II:
the number of PP components linear to n, whereNmax ≤

(
n
m

)
, i.e., logNmax

approximately for a judicious choice of n and m.
number of ciphertext and decryption key components meant for revocation
do not grow with Nmax.

No previous RABE scheme with direct revocation could achieve such
parameters.
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Complexity Analysis
Computation

Table: Count of Multilinear Operation

RABE RABE.Setup RABE.KeyGen RABE.Encrypt RABE.Decrypt

RABE-I 2`+ 2Nmax + 2 2`+ 4q + 2 4 `+ 3q + 4

RABE-II `+ 2n+ 5 4`+ 4q + 3 `+ 3 2`+ 3q + 3
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Future Scope

Designing an adaptively secure RABE scheme with polynomial security
reduction under standard assumption while attaining the efficiency level
of our constructions.
Building a revocable storage ABE (RSABE) scheme with those parame-
ters achieved by our work.
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Thanking Note
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