General Circuit Realizing Compact Revocable Attribute-Based Encryption from Multilinear Maps

by **Pratish Datta**

joint work with

Ratna Dutta and **Sourav Mukhopadhyay**

Department of Mathematics Indian Institute of Technology Kharagpur Kharagpur-721302 India

> ISC 2015 9–11th September, 2015

[Introduction](#page-2-0)

[Preliminaries](#page-7-0)

[Security](#page-26-0)

[Efficiency](#page-29-0)

- Attribute-based encryption (ABE) has been extensively deployed to realize complex access control functionalities in cloud environment.
- • Two crucial requirements of ABE systems are:
	- (i) Expressiveness of the supported decryption policies
	- (ii) User revocation

- While $[GGH^+13b]$, $[BGG^+14]$ presented ABE for arbitrary *polynomial*size Boolean circuits of *unbounded* fan-out, they do not support revocation.
- In all the existing *revocable* ABE (RABE) systems the decryption policies were restricted to circuits of fan-out one, paving the way for a "backtracking" attack.

[[]BGG+14]: Dan Boneh et al. In Advances in Cryptology–EUROCRYPT 2014.

[[]GGH+13b]: Sanjam Garg et al. In Advances in Cryptology–CRYPTO 2013.

Advantage of Direct Revocation in ABE

- The *direct* revocation technique controls revocation by specifying a revocation list directly during encryption.
- This method does not involve any additional proxy server or key update phase.
- Consequently, the non-revoked users remain unaffected and revocation can take effect instantly without requiring to wait for the expiration of the current time period.

- All currently available standard model RABE constructions supporting direct revocation mode follow the tree-based revocation mechanism of Naor et al. [NNL01].
- Consequently, the number of *revocation controlling components* in ciphertexts and decryption keys are $O(\widehat{r} \log \frac{N_{\max}}{\widehat{r}})$ and $O(\log N_{\max})$ respectively. spectively.
- N_{max} is the maximum number of users supported by the system and \hat{r} is the number of revoked users.

[NNL01]: Dalit Naor et al. In Advances in Cryptology–CRYPTO 2001.

- We apply the revocation technique introduced in [BGW05] and its improved variant [BWZ14] in the ABE setting.
- We propose two *direct* RABE schemes:
	- RABE-I: first to support general circuits and to feature constant number of revocation enforcing components in ciphertexts and decryption keys but public parameter size is *linear* to N_{max} .
	- RABE-II: achieves similar properties with public parameter size *logarithmic* to N_{max} .

[[]BGW05]: Dan Boneh et al. In Advances in Cryptology–CRYPTO 2005.

[[]BWZ14]: Dan Boneh et al. In Advances in Cryptology–CRYPTO 2014.

A (leveled) multilinear map consists of the following two algorithms:

- **i** $G^{MLM}(1^{\lambda}, \kappa) \to \text{PP}_{MLM} = (\vec{G} = (\mathbb{G}_1, \dots, \mathbb{G}_\kappa), g_1, \dots, g_\kappa)$ where \mathbb{G}_i 's are groups each of prime order $p>2^\lambda$, $g_i\in \mathbb{G}_i$ are canonical generators.
- $\mathbf{f} \in e_{i,j}$ $(g \in \mathbb{G}_i, h \in \mathbb{G}_j) \to v \in \mathbb{G}_{i+j}$ (for $i, j \in \{1, \ldots, \kappa\}, i+j \leq \kappa$) such that

$$
e_{i,j}(g_i^a, g_j^b) = g_{i+j}^{ab}
$$

for $a, b \in \mathbb{Z}_n$. We can also generalize *e* to multiple inputs as $e(\chi^{(1)}, \ldots, \chi^{(t)}) = e(\chi^{(1)}, e(\chi^{(2)}, \ldots, \chi^{(t)})).$

- We consider *monotone* and *layered* circuits with OR and AND gates having fan-in two.
- \bullet A circuit $f = (\ell, q, d, \mathbb{A}, \mathbb{B}, \mathsf{GateType}).$
- \bullet Here, ℓ, q , and d respectively denote the length of the input, the number of gates, and depth of the circuit.
- \bullet Input = {1,..., ℓ }, Gates = { $\ell + 1, ..., \ell + q$ }, $W =$ Input ∪ Gates, and $\ell + q =$ the output wire.
- A, $\mathbb{B}:$ gates \rightarrow $W \setminus {\ell + q}$ are functions such that for all $w \in$ Gates, $\mathbb{A}(w)$ and $\mathbb{B}(w)$ respectively identify w's first and second incoming wires. We consider $w > \mathbb{B}(w) > \mathbb{A}(w)$.

- GateType : Gates \rightarrow {AND, OR} defines a functions that identifies a gate as either an AND or an OR gate.
- depth : $W \rightarrow \{1, ..., d\}$ is a function such that depth $(w) = 1$, if $w \in$ Input, and depth $(w) =$ one plus the length of the shortest path from *w* to an input wire, otherwise. Since our circuit is layered, for all $w \in$ Gates.

$$
\operatorname{depth}({\mathbb A}(w))=\operatorname{depth}({\mathbb B}(w))=\operatorname{depth}(w)-1.
$$

 $f(x) =$ evaluation of the circuit f on input $x \in \{0,1\}^{\ell}$, and $f_w(x) =$ value of wire *w* of *f* on *x*.

\n- \n
$$
\mathcal{G}^{\text{MLM}}(1^{\lambda}, \kappa = \ell + d + 1) \rightarrow \text{PP}_{\text{MLM}} = (\overrightarrow{\mathbb{G}} = (\mathbb{G}_1, \ldots, \mathbb{G}_{\kappa}), g_1, \ldots, g_{\kappa}).
$$
\n
\n- \n $A_{i,\beta} = g_1^{a_{i,\beta}}$ for $i = 1, \ldots, \ell; \beta \in \{0, 1\}$, where $(a_{1,0}, a_{1,1}), \ldots, (a_{\ell,0}, a_{\ell,1}) \in \mathbb{S} \mathbb{Z}_p^2$.\n
\n

$$
\begin{aligned}\n\bullet \quad & \vartheta_j = g_1^{\alpha^{(j)}} \text{ for } j = 1, \dots, N_{\text{max}}, \ N_{\text{max}} + 2, \dots, 2N_{\text{max}}, Y = g_1^{\gamma}, \\
& Z = g_{d-1}^{\theta}, \ \Omega = g_{d+1}^{\alpha^{(N_{\text{max}}+1)}\theta}, \text{ where } \alpha, \gamma, \theta \in \mathcal{Z}_p.\n\end{aligned}
$$

 $\textsf{P} = (\textsf{PP}_{\textsf{MLM}}, \{ A_{i, \beta} \}_{i=1,...,\ell; \beta \in \{0,1\}}, \dots)$ $\{\vartheta_j\}_{j=1,\dots,N_{\max},N_{\max}+2,\dots,2N_{\max}}, Y, Z, \Omega)$ along with $UL = \varnothing$ while keep $MK = (\alpha, \gamma, \theta).$

[Introduction](#page-2-0) [Preliminaries](#page-7-0) [Our RABE Constructions](#page-10-0) [Security](#page-26-0) [Efficiency](#page-29-0) [Conclusion](#page-31-0) RABE-I **RABE.KeyGen**(PP, MK, UL, ID, $f = (\ell, q, d, \mathbb{A}, \mathbb{B}, \mathsf{GateType}))$

\n- **0** Assign
$$
u \in \mathcal{N} = \{1, \ldots, N_{\text{max}}\}
$$
 such that $(\cdot, u) \notin \text{UL}$ to ID, update $\text{UL} = \text{UL} \cup \{(ID, u)\}.$
\n- **0** $r_1, \ldots, r_{\ell+q} \in \mathbb{S} \mathbb{Z}_p.$
\n- **0** $\mathcal{K} = g_d^{\alpha^{(u)} \theta \gamma - r_{\ell+q}}.$
\n

RABE.KeyGen(PP, MK, UL, ID, $f = (\ell, q, d, \mathbb{A}, \mathbb{B}, \mathsf{GateType})$)

⁴ Generate key components for every wire *w* as follows:

• *Input wire:*
$$
\mathcal{K}_w = e(A_{w,1}, g_1)^{r_w} = g_2^{r_w a_{w,1}}
$$
.

• OR gate: Let
$$
t = \text{depth}(w)
$$
. $\mu_w, \nu_w \in \mathcal{Z}_p$,

$$
\mathcal{K}_w = (K_{w,1} = g_1^{\mu_w}, K_{w,2} = g_1^{\nu_w}, K_{w,3} = g_t^{r_w - \mu_w r_{\mathbb{A}(w)}}, K_{w,4} = g_t^{r_w - \nu_w r_{\mathbb{B}(w)}}).
$$

• AND gate: Let
$$
t = \text{depth}(w)
$$
. $\mu_w, \nu_w \in \mathbb{S} \mathbb{Z}_p$,

$$
\mathcal{K}_w = (K_{w,1} = g_1^{\mu_w}, K_{w,2} = g_1^{\nu_w}, K_{w,3} = g_t^{r_w - \mu_w r_{\mathbb{A}(w)} - \nu_w r_{\mathbb{B}(w)}}).
$$

5 Give SK $_{f, \mathsf{ID}} = (f, \mathsf{ID}, \mathcal{K}, \{\mathcal{K}_w\}_{w \in \{1, ..., \ell + q\}})$ to the user.

■ Define RI \subset N corresponding to RL using UL, i.e., if ID \in RL and $(ID, j) \in UL$ include *j* in RI. Determine SI = $N \setminus RI$.

2 $s \in \mathbb{Z}_n$

$$
C_M = e(\Omega, A_{1,x_1}, \dots, A_{\ell,x_\ell})^s M = g_\kappa^{\alpha^{(N_{\max}+1)}\theta s \delta(x)} M,
$$

\n
$$
C = g_1^s, C' = (Y \prod_{j \in \mathsf{SI}} \vartheta_{N_{\max}+1-j})^s = (g_1^\gamma \prod_{j \in \mathsf{SI}} g_1^{\alpha^{(N_{\max}+1-j)}})^s,
$$

where $\delta(x) = \prod_{i=1}^{\ell} a_{i,x_i}$. **3** Output $\mathsf{CT}_{x,\mathsf{RL}} = (x,\mathsf{RL},C_M,C,C').$

0 Output \bot , if $[f(x) = 0]$ ∨ $[ID \in RL]$; otherwise, proceed to the next step.

$$
\begin{aligned} \n\bullet \ D &= e(A_{1,x_1}, \dots, A_{\ell,x_\ell}) = g_\ell^{\delta(x)}, \\ \n\hat{E} &= e(\mathcal{K}, D, C) = g_\kappa^{(\alpha^{(u)}\theta\gamma - r_{\ell+q})s\delta(x)}. \n\end{aligned}
$$

- ³ Perform the bottom-up evaluation of the circuit. For every wire *w* with corresponding depth $(w) = t$, if $f_w(x) = 0$, compute nothing, otherwise, $\mathcal{L}_w = g_{\ell+t+1}^{r_w s \delta(x)}$ as follows:
	- Input wire:

$$
E_w = e(\mathcal{K}_w, A_{1,x_1}, \dots, A_{w-1,x_{w-1}}, A_{w+1,x_{w+1}}, \dots, A_{\ell,x_\ell}, C) = g_{\ell+1+1}^{r_w s \delta(x)}.
$$

• *OR gate*: If
$$
f_{\mathbb{A}(w)}(x) = 1
$$
,

 $E_w = e(E_{\mathbb{A}(w)}, K_{w,1})e(K_{w,3}, D, C) = g_{\ell+t+1}^{r_w s\delta(x)}$.

Alternatively, if $f_{\mathbb{A}(w)}(x) = 0$ and hence $f_{\mathbb{B}(w)}(x) = 1$,

$$
E_w = e(E_{\mathbb{B}(w)}, K_{w,2})e(K_{w,4}, D, C) = g_{\ell+t+1}^{r_w s\delta(x)}.
$$

• AND gate: Certainly $f_{\mathbb{A}(w)}(x) = f_{\mathbb{B}(w)}(x) = 1$.

$$
E_w = e(E_{\mathbb{A}(w)}, K_{w,1})e(E_{\mathbb{B}(w)}, K_{w,2})e(K_{w,3}, D, C) = g_{\ell+t+1}^{r_w s\delta(x)}.
$$

Finally, $E_{\ell+q} = g_{\kappa}^{r_{\ell+q}s\delta(x)}$, as $f(x) = f_{\ell+q}(x) = 1$.

- \bullet Determine RI $\subset \mathcal{N}$ corresponding to RL using UL and obtain SI = $\mathcal{N}\setminus$ RI. Since ID \notin RL, $u \in$ SI.
- **•** Retrieve the message by the following computation:

$$
C_{M}\widehat{E}E_{\ell+q}e\left(\prod_{j\in\mathsf{SI}\backslash\{u\}}\vartheta_{N_{\max}+1-j+u},Z,D,C\right)e\left(\vartheta_{u},Z,D,C'\right)^{-1}
$$
\n
$$
= g_{\kappa}^{\alpha^{(N_{\max}+1)}\theta s\delta(x)}M \cdot g_{\kappa}^{(\alpha^{(u)}\theta\gamma-r_{\ell+q})s\delta(x)} \cdot g_{\kappa}^{r_{\ell+q}s\delta(x)}.
$$
\n
$$
\prod_{j\in\mathsf{SI}\backslash\{u\}} g_{\kappa}^{\alpha^{(N_{\max}+1-j+u)}\theta s\delta(x)} \cdot \left[g_{\kappa}^{\alpha^{(u)}\theta\gamma s\delta(x)}\right]
$$
\n
$$
g_{\kappa}^{\alpha^{(N_{\max}+1)}\theta s\delta(x)} \cdot \prod_{j\in\mathsf{SI}\backslash\{u\}} g_{\kappa}^{\alpha^{(N_{\max}+1-j+u)}\theta s\delta(x)}\right]^{-1}
$$
\n
$$
= M.
$$

- **1** Choose two positive integers n, m suitably such that $N_{\text{max}} \leq {n \choose m}$. $\mathcal{N} = \{j \in \{1, \ldots, 2^n - 2\} \mid HW(j) = m\}.$ 2 $G^{\text{MLM}}(1^{\lambda}, \kappa = n + d + m - 1) \rightarrow \text{PP}_{\text{MLM}} = (\vec{G} = (\mathbb{G}_1, \dots, \mathbb{G}_\kappa), g_1, \dots, g_\kappa).$ 3 $A_i = g_m^{a_i}$ for $i = 1, \ldots, \ell$ where $a_1, \ldots, a_\ell \in \mathbb{Z}_p$. **1** $\xi_{\iota} = g_1^{\alpha^{(2^{\iota})}}$ for $\iota = 0, \ldots, n, Y = g_n^{\gamma}$ $\hat{a}_{n-1}^{\gamma},\ Z=g_{d}^{\theta},\ \Omega=g_{\kappa}^{\alpha^{(2^{n}-1)\theta}},$ where $\alpha, \gamma, \theta \in \mathbb{R} \mathbb{Z}_p$.
- \bullet Keep MK $= (\alpha, \gamma, \theta)$ while publish $\mathsf{PP} = (\mathsf{PP}_{\mathsf{MLM}}, n, m, \{A_i\}_{i=1,...,\ell}, \theta)$ $\{\xi_{\iota}\}_{{\iota}=0,...,n}, Y, Z, \Omega)$ along with $UL = \varnothing$.

- **4** Assign to ID $u \in \mathcal{N}$ such that $(\cdot, u) \notin \mathsf{UL}$, update $\mathsf{UL} = \mathsf{UL} \cup \{(\mathsf{ID}, u)\}.$
- 2 $r_1, \ldots, r_{\ell+q} \in \mathbb{Z}_p$. 3 $\mathcal{K} = g_{n+d-1}^{\alpha^{(u)}\theta\gamma - r_{\ell+q}}$ $\frac{a+b+1}{n+d-1}$.

RABE.KeyGen(PP, MK, UL, ID, $f = (\ell, q, d, \mathbb{A}, \mathbb{B}, \mathsf{GateType})$)

⁴ Form key components for every wire *w* as follows:

\n- \n • Input wire: \n
$$
z_w \in \mathbb{Z}_p
$$
, \n $\mathcal{K}_w = (K_{w,1} = g_n^{r_w} e(A_w, g_{n-m})^{z_w} = g_n^{r_w} g_n^{a_w z_w}, \, K_{w,2} = g_n^{-z_w}$). \n
\n- \n • OR gate: \n $Let \, t = \text{depth}(w)$. \n $\mu_w, \nu_w \in \mathbb{Z}_p$, \n $\mathcal{K}_w = (K_{w,1} = g_1^{\mu_w}, K_{w,2} = g_1^{\nu_w}, K_{w,3} = g_{n+t-1}^{r_w - \mu_w r_{\mathbb{A}(w)}}, K_{w,4} = g_{n+t-1}^{r_w - \nu_w r_{\mathbb{B}(w)}})$. \n
\n- \n • AND gate: \n $Let \, t = \text{depth}(w)$. \n $\mu_w, \nu_w \in \mathbb{Z}_p$, \n $\mathcal{K}_w = (K_{w,1} = g_1^{\mu_w}, K_{w,2} = g_1^{\nu_w}, K_{w,3} = g_{n+t-1}^{r_w - \mu_w r_{\mathbb{A}(w)} - \nu_w r_{\mathbb{B}(w)}})$. \n
\n- \n Hand SK_{f,ID} = (f, ID, K, \{K_w\}_{w \in \{1, \ldots, \ell + q\}}) \n to the user.\n
\n

- **1** Define RI $\subset \mathcal{N}$ corresponding to RL using UL and set $SI = \mathcal{N} \backslash RI$.
- 2 Compute ϑ_{2^n-1-j} for all $j \in \mathsf{SI}$ as follows, where $\vartheta_{\varpi} = g_{n-1}^{\alpha^{(\varpi)}}$ for positive integer ϖ . For any $j \in \mathsf{SI} \subseteq \mathcal{N}$, $j = \sum_{\iota \in J} 2^{\iota}$ where $J \subseteq \{0, \ldots, n-1\}$, $|J| = m$. Thus, $2^n - 1 - j = \sum_{\iota \in \overline{J}} 2^{\iota}$ where $\overline{J} = \{0, \ldots, n - 1\} \backslash J =$ {*ι*1*, . . . , ιn*−*m*} (say). So,

$$
\vartheta_{2^n-1-j}=e(\xi_{i_1},\ldots,\xi_{i_{n-m}},g_{m-1})=g_{n-1}^{\alpha(2^{n-1}-j)}.
$$

 $\mathsf{RABE}.\mathsf{Encrypt}(\mathsf{PP},\mathsf{UL},x=x_1\ldots x_\ell\in\{0,1\}^\ell,\mathsf{RL},M\in\mathbb{G}_\kappa)$

$$
\bullet \ \ s \in _{\$} \mathbb{Z}_p,
$$

$$
C_M = \Omega^s M = g_{\kappa}^{\alpha^{(2^n-1)}\theta s} M, \ C = g_m^s,
$$

\n
$$
C_i' = A_i^s = g_m^{a_i s} \text{ for } i \in \mathcal{S}_x = \{i | i \in \{1, ..., \ell\} \land x_i = 1\},
$$

\n
$$
C'' = \left(Y \prod_{j \in \mathsf{SI}} \vartheta_{2^n - 1 - j}\right)^s = \left(g_{n-1}^\gamma \prod_{j \in \mathsf{SI}} g_{n-1}^{\alpha^{(2^n-1-j)}}\right)^s.
$$

↑ Output $\mathsf{CT}_{x,\mathsf{RL}} = (x,\mathsf{RL}, C_M, C, \{C'_i\}_{i \in S_x}, C'').$

¹ Output ⊥, if [*f*(*x*) = 0]∨[ID ∈ RL]; otherwise, proceed to the next step. 2 $\hat{E} = e(\mathcal{K}, C) = e(g_{n+d-1}^{\alpha^{(u)}\theta\gamma - r_{\ell+q}})$ $g_{n+d-1}^{(\alpha^{(u)}\theta\gamma - r_{\ell+q}}, g_m^s) = g_{\kappa}^{(\alpha^{(u)}\theta\gamma - r_{\ell+q})s}.$

³ Perform the bottom-up evaluation of the circuit. For every wire *w* with corresponding depth $(w) = t$, if $f_w(x) = 0$, compute nothing, otherwise, $E_w = g_{n+t+m-1}^{r_w s}$ as follows:

• Input wire:

$$
E_w = e(K_{w,1},C) e(K_{w,2},C'_w) = g^{r_w s}_{n+m} = g^{r_w s}_{n+1+m-1}.
$$

• OR gate: If $f_{\mathbb{A}(w)}(x) = 1$,

$$
E_w = e(E_{\mathbb{A}(w)}, K_{w,1})e(K_{w,3}, C) = g_{n+t+m-1}^{r_w s}.
$$

Alternatively, if $f_{\mathbb{A}(w)}(x) = 0$ and hence $f_{\mathbb{B}(w)}(x) = 1$,

$$
E_w = e(E_{\mathbb{B}(w)}, K_{w,2})e(K_{w,4}, C) = g_{n+t+m-1}^{r_w s}.
$$

• AND gate: Certainly $f_{\mathbb{A}(w)}(x) = f_{\mathbb{B}(w)}(x) = 1$.

 $E_w = e(E_{\mathbb{A}(w)}, K_{w,1})e(E_{\mathbb{B}(w)}, K_{w,2})e(K_{w,3}, C) = g_{n+t+m-1}^{r_w s}.$ Finally, $E_{\ell+q} = g_{\kappa}^{r_{\ell+q}s}$, as $f(x) = f_{\ell+q}(x) = 1$.

- \bullet Determine RI $\subset \mathcal{N}$ corresponding to RL using UL and obtain SI $= \mathcal{N} \setminus RI$. As $ID \notin \mathsf{RL}$, $u \in \mathsf{SL}$.
- **3** Compute $\vartheta'_u = g_m^{\alpha^{(u)}}$ and $\vartheta_{2^n-1-j+u} = g_{n-1}^{\alpha^{(2^n-1-j+u)}}$ $\alpha^{(2)}_{n-1}$ ^{-1-j+a)} for all $j \in \mathsf{Sl}\backslash\{u\}$ as follows:
	- (a) $(\text{Computing } \vartheta_u') \text{ As } u \in \text{SL} \subseteq \mathcal{N}, u = \sum_{u \in U} 2^u \text{ where } U = \{ \iota_1', \ldots, \iota_m' \} \subseteq \mathcal{N}$ $\{0, \ldots, n-1\}$ (say). So, $\vartheta'_u = e(\xi_{\iota'_1}, \ldots, \xi_{\iota'_m}) = g_m^{\alpha^{(u)}}$. (b) Computing $\vartheta_{2^n-1-j+u}$ for $j \in \mathsf{SI}\setminus\{u\}\big)$ $2^n-1-j=\sum_{\iota\in\mathcal{J}} 2^\iota$ where $\overline{J} = \{i_1, \ldots, i_{n-m}\} \subseteq \{0, \ldots, n-1\}$. *U* $\cap \overline{J} = \emptyset$ only if $j = u$. Since $j \neq u$, $\exists \hat{i} \in \overline{J} \cap U$. $\hat{i} = i_{n-m} = i'_{m}$ (say). Then, $2^{n} - 1 - j + u =$ $\sum_{\iota \in \overline{J}\setminus\{\iota\}} 2^{\iota} + \sum_{\iota \in U\setminus\{\iota\}} 2^{\iota} + 2^{\iota+1}$. So, $\vartheta_{2n-1-j+u} = e(\xi_{i_1}, \ldots, \xi_{i_{n-m-1}}, \xi_{i'_1}, \ldots, \xi_{i'_{m-1}}, \xi_{i+1}) = g_{n-1}^{\alpha^{(2^{n}-1-j+u)}}$ $\frac{\alpha}{n-1}$.

⁶ Retrieve the message by the following computation:

$$
C_M \hat{E} E_{\ell+q} e\left(\prod_{j \in \mathsf{SI}\backslash\{u\}} \vartheta_{2^n-1-j+u}, Z, C\right) e\left(\vartheta_u', Z, C''\right)^{-1}
$$

= $g_{\kappa}^{\alpha^{(2^n-1)}\theta s} M \cdot g_{\kappa}^{\left(\alpha^{(u)}\theta\gamma - r_{\ell+q}\right)s} \cdot g_{\kappa}^{r_{\ell+q}s} \cdot \prod_{j \in \mathsf{SI}\backslash\{u\}} g_{\kappa}^{\alpha^{(2^n-1-j+u)}\theta s}.$

$$
[g_{\kappa}^{\alpha^{(u)}\theta\gamma s} \cdot g_{\kappa}^{\alpha^{(2^n-1)}\theta s} \cdot \prod_{j \in \mathsf{SI}\backslash\{u\}} g_{\kappa}^{\alpha^{(2^n-1-j+u)}\theta s}]^{-1}
$$

= $M.$

Theorem (RABE-I)

- RABE-I is secure in the selective revocation list model against CPA if the $(\ell + d + 1, N_{\text{max}})$ -MDHE assumption holds for the underlying multilinear group generator $\mathcal{G}^{\sf MLM}$.
- \bullet ℓ , *d*, and N_{max} denote respectively the input length of decryption circuits, depth of the decryption circuits, and the maximum number of users supported by the system.

Theorem (RABE-II)

- RABE-II is secure in the selective revocation list model against CPA if the (n, d, m) -cMDHE assumption holds for the underlying multilinear group generator $\mathcal{G}^{\sf MLM}$.
- n,m are two integers for which $N_{\max} \leq {n \choose m}$.

Multilinear Diffie-Hellman Exponent Assumption: (*κ, N*)-MDHE

It is hard to guess $\widetilde{b} \in \{0, 1\}$ given $\varrho_{\widetilde{b}} \leftarrow \mathcal{G}_{\widetilde{b}}^{(\kappa, N)\text{-MDHE}}$ $(1^{\lambda}).$ $\mathcal{G}_{\widetilde{\gamma}}^{(\kappa,N)\text{-MDHE}}(1^\lambda)$: $\frac{b}{\sqrt{b^{\text{MLM}}(1^{\lambda}, \kappa)}}$ → PP_{MLM}; \bullet *α,ς, ψ*₁*,..., ψ_{κ−2} ∈* ε \mathbb{Z}_n ; $\vartheta_j = g_1^{\alpha^{(j)}}$ for $j = 1, ..., N, N+2, ..., 2N, \Upsilon = g_1^{\varsigma}, \tau_i = g_1^{\psi_i}$ for $i = 1, ..., N$ $1, \ldots, \kappa - 2;$ $\Re_0 = g_\kappa^{\alpha^{(N+1)}\varsigma} \prod_{i=1}^{\kappa-2} \psi_i$, $\Re_1=$ some random element in $\mathbb{G}_\kappa;$ $\varrho_{\widetilde{b}} = (\text{PP}_{\text{MLM}}, \vartheta_1, \dots, \vartheta_N, \vartheta_{N+2}, \dots, \vartheta_{2N}, \Upsilon, \tau_1, \dots, \tau_{\kappa-2}, \vartheta_{\widetilde{b}}).$

Compressed Multilinear Diffie-Hellman Exponent Assumption: (*n, k, l*)-cMDHE

\n- It is hard to guess
$$
\tilde{b} \in \{0, 1\}
$$
 given $\varrho_{\tilde{b}} \leftarrow \mathcal{G}_{\tilde{b}}^{(n,k,l)\text{-cMDHE}}(1^{\lambda})$.
\n- $\mathcal{G}_{\tilde{b}}^{(n,k,l)\text{-cMDHE}}(1^{\lambda})$:
\n- $\mathcal{G}^{\text{MLM}}(1^{\lambda}, \kappa = n + k + l - 1) \rightarrow \text{PP}_{\text{MLM}}$;
\n- $\alpha, \varsigma, \psi_1, \ldots, \psi_k \in \mathbb{Z}_p$;
\n- $\xi_{\iota} = g_1^{\alpha^{(2^{\iota})}}$ for $\iota = 0, \ldots, n, \tau_h = g_1^{\psi_h}$ for $h = 1, \ldots, k$, $\Upsilon = g_i^{\varsigma}$;
\n- $\Re_0 = g_{\kappa}^{\alpha^{(2^{n}-1)} \varsigma} \prod_{h=1}^k \psi_h, \Re_1 = \text{some random element of } \mathbb{G}_{\kappa}$;
\n- $\varrho_{\tilde{b}} = (\text{PP}_{\text{MLM}}, \xi_0, \ldots, \xi_n, \tau_1, \ldots, \tau_k, \Upsilon, \Re_{\tilde{b}})$.
\n

Complexity Analysis Communication and Storage

RABE-I:

- only 3 group elements in the ciphertexts.
- number of decryption key components $\ell + 4q + 1$ in the worst case.
- \bullet the number of PP components linear to N_{max} .
- RABE-II:
	- the number of PP components linear to *n*, where $N_{\max} \leq {n \choose m}$, i.e., $\log N_{\max}$ approximately for a judicious choice of *n* and *m*.
	- number of ciphertext and decryption key components meant for revocation do not grow with N_{max} .
- No previous RABE scheme with direct revocation could achieve such parameters.

Complexity Analysis Computation

Table: Count of Multilinear Operation

- Designing an *adaptively* secure RABE scheme with *polynomial* security reduction under *standard* assumption while attaining the efficiency level of our constructions.
- • Building a *revocable storage* ABE (RSABE) scheme with those parameters achieved by our work.

