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A Brief Norwegian Crypto History



Norwegian Crypto in the 1930s

e Captain Alfred Roscher Lund
—Organized Norwegian cryptology in 1930s
— Puzzles in Aftenposten, November 23, 1935
— Recruited a “Crypto Club” when WW I
oroke out. Members included:

* Puzzle solvers

* Mathematicians
* Bridge players






ETCRRM

Bjorn Rgrholt (1919-1993)
“One-Time-Pad” using
radioactive source

Constructed by STK in the 50s
(now Thales)

Used to secure the first telex
hot line between Kremlin and
the White House




PACE - Pocket Automatic Crypto
Equipment

Hand-held device for off-line
encryption/decryption

Produced in 20.000 copies

Uses an error-correcting
code for transmission of data

between two devices

Developed by Lehmkuhl AS
in 1970-80s sold to Thales
and further to Kongsberg AS




Ernst S. Selmer (1920-2006)

* Professor in Mathematics
University of Bergen ERNST S SELMER
(1957-1990)

* Cryptographer in WW ||

* Pioneer in cryptographer LINEAR RECURRENCE RELATIONS
and coding in Norway OVER FINITE FIELDS

Designed error control in Norwegian social
security numbers in 1964
Monograph (1966)
— “Linear Recurrence Relations over
Finite Fields” e o o

— Sold 200 copies in 10 minutes at
Eurocrypt 1993

Selmer groups & Fermat’s theorem



Sequences



m-Sequence (Binary Example)

St+4 = St+1+ St

g(x)=x*+x+1

v
NP

(s) : 000100110101111...

Properties of m-sequences
e Periode=2"-1
 Balanced (except for a missing 0)
* Run properties |
* Shift-and-add property s,+s,.=S,,,
* Decimation property s, = Sty

* Trace representation
s, = Tr(Aat) = 5(Aah)? = Ajat+ Ao + Ajadt+ A, ot




The Simplex Code

 Cisalinear[N,k,d] code if
* Cis a k dimensional subspace of {0,1}"
* d =min{d,(c,,c,) : ¢;, ¢, € C}

where d, denotes the Hamming distance.

* The m-sequence and all its shifts ans (0) form a
linear code with parameters

[2"-1,n,2"1]



Correlation of sequences

* Let (a,) and (b,) be binary sequences of period ¢
over the alphabet GF(2)

* The crosscorrelation between (a,) and (b,) at
shift tis

e-1
Ga,b(r) - t§0 (_]_)at+t_ bt

* The autocorrelaltion of (a,) at shift T is
.
0, ,(t) = tz_o(_]_)atﬂ—at



Two-level autocorrelation of m-sequences

* Let (s,) be an m-sequence of period €=2"-1
 Then the autocorrelation of the m-sequence is
0,(t)=2"-1 ift=0(mod2"-1)
= -1 ift=0(mod2"-1)
Proof: Let Tt # 0 (mod 2"-1). Then
0, () = 2 (-1)°t+T st
= 2, (-1)3t+y

=-1 (since m-sequence is balanced)



Binary 3-valued crosscorrelation

* C,(t) has exactly 3 different values in the cases:
- Gold :d=2k+1 where n/(n,k) is odd
- Kasami: d =2%-2k+1 where n/(n,k) is odd
- Welch’s conjecture: (Canteau, Charpin, Dobbertin 2000)
d=2"+3 where n=2m+1 is odd
-Niho' s conjecture : (Dobbertin & Hollman and Xiang)
d=2(1/2 4 2(0-1)/4.1 when n=1(mod 4)
= 2(n-1)/2 4 2Bn-1)/4_1 when n=3 (mod 4)
- Cusick and Dobbertin  (Cusick and Dobbertin 1996)
d=2"2+22)/24+ 1 when n=2 (mod 4)
d =2(+2)/2 4+ 3 when n=2 (mod 4)
Open problem:
Are these all the cases with 3-valued crosscorrelation?



Applications to CDMA

* |n Code-Division Multiple Access(CDMA) one
needs large families F of sequences with good

correlation properties

* Parameters of a familyis (g, M, 6,...)

— € period of the sequences in F
— M size of family (# of cyclically distinct sequences)

— 6,,,,, maximal absolute value of the (nontrivial)

auto- or cross correlation between any two
distinct sequences on the family



Scrambling Code Design for 3G Wireless

Cellular Communication
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S-boxes/APN/AB



Sequences and S-boxes 1n cryptography

e S-box (nxn) is a mapping f : GF(2") — GF(2")
* Need good differentiability
f(x+a) + f(x) = b has “few” solutions for any a#0, b
* Need good nonlinearity
f(x) has “large distance” to all linear functions
* Aiming for
Almost Perfect Nonlinear functions (APN)
Almost Bent functions (AB)



APN and AB functions

e Afunctionf: GF(2") — GF(2") is APN if
f(x+a)+f(x)=Db
has at most two solutions for any a=0, b in GF(2").
 The Walsh transform of f is defined by
)\f(a,b) — erGF(Z”) (_1)Tr(af(x) + bx)
* A function f(x) is AB if
{\(a,b) : a, b e GF(2") } ={0, £2(n*1)/2}
 AB= APN (Chabaud and Vaudenay 1994)

 Monomial AB functions where f(x)=x% can be

obtained from Gold sequences and several of the
decimations with 3-valued cross correlation



Known AB power functions x°

Gold: d=2k+1 where (k,n)=1
Kasami: d=22k-2k+1 where (k,n)=1
Welch: d=2"+3 where n=2m+1 is odd
Niho:
d =2(0-1)/2 4 2(n-1)/4_1 when n=1(mod 4)
=2(n-1)/2 4 2B3n-1)/4_1 when n=3 (mod 4)

Three-valued cross correlation with values
{-1,-1+2(1/2}

Open problem(Dobbertin): Is this list complete?



Known APN power functions x¢

 Gold: d=2%1  where (k,n)=1
e Kasami: d =222k+1 where (k,n)=1
e Welch: d=2"+3 where n=2m+1 is odd
 Niho:

d=201/2 4 20-1)/4_1 when n=1(mod 4)

= 2(n-1)/2 4 2Bn-1)/4_1 when n=3 (mod 4)

* |Inverse: d=2"-2 (=-1mod 2"-1) where n odd
e Dobbertin: d = 2%+23k+22k42kq where n=5k

Open problem(Dobbertin): Is this list complete?



Sequences and the S-box in AES

The cross correlation between m-sequence (s,) and reverse
sequence (s_) corresponds 1s the famous Klosterman sum

C.y() = Ty (1) 0D
Bound for Kloosterman sum
IC_(v)+1] <2:272

The AES S-box is based on f(x)= x! for n=8. The correlation
between x! and all linear functions is bounded by |C_,(7)|

The S-box is 4-uniform (not APN), the best known for n=8.

The S-box 1s not AB but the correlation (and nonlinearity) 1s
the best known for n=8.



Authentication Codes



Codes Which Detect Deception (1974)
(E.N. Gilbert, F.J. MacWilliam, N.J.A. Sloane)




Two attacks

* Impersonation attack

A B

e Substitution attack

A )rg\“m' B

Eve
e Authentication codes

— Compute t = h (m) where K is authentication key
(Send message and tag (m,t) to B)

— ldeally P, = P.= 2", probability of successful attack

— Coding theory is behind many good constructions



Authentication Codes

m; m, ... m;..my

Tagt=h(m)

Need balanced columns
for good P,

Need good balance
between pairs of
columns for good P.

Can make A-codes based
on (non-binary) codes
and sequences

GMAC based on Reed-
Solomon codes



Stream Ciphers



Stream Cipher

Key Key
Pseudorandom- Pseudorandom-
generator generator

\ Keystream Keystream
Plaintext Ciphertext Plaintext
> D > @& >

Requirements for a good keystream
- Good randomness distribution
- Long period
- High complexity



Nonlinear Components in Stream Cipher

* Techniques to get higher linear complexity
- The LFSRs are clocked irregularly
- The LFSR bits are sent through a nonlinear function
- Nonlinear combiner (several shift registers)
- Attacks are using correlation attacks
(based on coding theory)
- Filter generator (one shift register)
- Algebraic attacks
(solving nonlinear equations)



Clock Controlled LFSRs

LFSR 1 =

ﬁ); )
Z

LESR 2 s /l\ t

 LFSR 1 generates an m-sequence mapped by D to an
integer clock sequence c, used to select the bits in u,
generated by LFSR 2 to be the output bit z,




Nonlinear Combining LFSRs

Using several LFSRs

u 1
LFSR 1 t \
u,? z
LFSR 2 t m :
u,"
LFSR n
(X, %5, X)) = Z Qi i XigXipreXi



Geffe generator
X1
LFSR 1 v
A
LFSR2 |—> 7
f
LFSR 3 X3 >J

The LFSRs generate m-sequence of period 2"- 1, ged (n;,n)=1
o Z=f(Xy,Xy,00,X,) = X XXX HXg

* X,=1->f=x

* X,=0 > f=x5

 Period = (2"-1)(2"2-1)(2"3-1)

* Linear complexity = n,n,+n,n;+n,




Correlation attack - Geffe generator

LFSR 1

LFSR 2 7 Z
f >

LFSR 3

Correlation attack of Geffe generator
(NB! Prob(z = x,) = %)
- Guess the initial state of LFSR 1
- Compare x, and z
- If agreement %, guess is likely to be correct
- If agreement 2, guess is likely to be wrong



Fast correlation attacks

Need a correlation p # 0.5 between keystream and register
Do not need to guess a full register

Construct a new linear code where bits are linear
combinations of a subset of bits in initial state of register.

Each code position estimated by few w <4 keystream bits

Ideas from coding theory are used to construct the

closest codeword i.e., bits in the subset

Efficient implementations of Viterbi decoder with rate
R=101 and error probability p =0.49



Filter Generator



Filter Generator

LFSR of length n generating an m-sequence
(s,) of period 2"-1 determined by initial state (s,,s,,...,S,,.1)

Nonlinear Boolean function f(x,,x,,...,X, ;) of degree d

Keystream

D
// \ Z, = T(S;,S 1150+ St4n-1)

' \éj/ . = f.(Sg,S1,-++,S 1)

F(XgiX 1o Xn 1) = Z Gy iy XigX oo X

=2 CX



Example — Filter Generator

g(x) = x*+x+1
St+a = St *St

A

St43

(X0 X1, X5,X3) = XX+ X X3+ X5

Zt = StS‘t+1 + St+1St+3 + St+3

o= 1(S0,51,5,,53) = 555,+5,55%S;  (=f;)
2, =1(51,5,,53,54) = 1(51,5,,53,50+S1) = Sp+S1+S,5, (=f)
z, = 1(s,,55,54,55) = (S,,55,50+51,51%S,) = S;+5,+S,5, (=1,)



Multivariate Equations

Zy= SoS1+S,S3+5;

Z, = 55,+S5+S,

Z,=5,S3+S,+S,

Z3 = SoS,+5,5,+5,+S,

Z, = 5,53+5,5;+5,+5,+5,

Zc = SuS,+5,S3+5,5,+5,53+5,+5,+S,

Linearization gives a linear system with (‘2‘) + (‘1‘) =10 unknowns
Zy= a,+ag+ a,
Z,= ac+ay+a,
Z,= ag+a;+a,
Z;= ac+a,+a,+a,
Z,= ag+ag+a,+a,+a;
Z.= ac+ag+a,+ag+a,+a; +a,
Solve by using Gaussian elimination



Standard Linarization Attack

Shift register m-sequence (s,) of period 2"- 1
Boolean function f(x,,x,,...,X,, ;) of degree d

z, = T(S,S41r-+rStan.1) = Ti(S9,S1,++,Sh.1)
Nonlinear equation system of degree d in
n unknownss,,...,S. ,
Reduce to linear system: D unknown monomials
D=(5) + () +et(])
Need about D keystream bits
Complexity D, w =log, 7 = 2.807



Example - Coefficient Sequences

* Lets,,=S,1tS;1.€., S,=5,+S,
F(X0,X1,X9,X3) = X5 XX, FX X X3+ XX X5 X5

* 2= (S0St1StarSta) T Stat SStat Ste1St2St3 + StSt1St2Sts3

0= To(50,51,5,53) =S, + 5pS+ 5,5,55 + 5515553
1= 1(50,51,55,53) = S5+ 55+ S0S,53 + 54,5,5,53
5= 1,(50,51,57,53) = Sg+ S1+ 153+ 5,55 + 5,5,S3+ 5,5,55+ $0515,53
3= F3(50,51,55,53) = Sy + S+ 535, + 5553+ 5153+ 535S, S5S,55 + S55,5,53
2= T4(50,51,55,53) = Sy + S+ S5+ 555+ S;S,+ 5,5, + 55,55+ S$0515,53
e = fc(S0,51,55,53) = Sg+ Sy + Sy+ S3+ S,S3+ S,55+ S;5,S,+ 55,53+ 55515553

Some coefficient sequences
1={0,1,2,3} K=111111..
1={0,2,3} Ki=010100...
1={1,3} Ki=001101...



Ronjom-Helleseth Algebraic Attack

 Recovering initial state of the binary filter generator
in complexity

- Pre-computation O(D (log,D)?3)
- Attack O(D)
- Need D keystream bits

* Main idea - Coefficient sequences of I={iy,iy,...,i, ¢}
- Consider (binary) coefficient K| . in f,(sy,S4,...,5,,.1)
of the monomial s;=s; s;;...5;  attimet
- K, . obeys some nice recursions



Multivariate - Univariate

Let x=2. x, o, where a,...,0,, ; basis GF(2"), x={0,1}
* 1-1 correspondence GF(2)" <> GF(2")
* (Xgy-erXpq) €2 X
 Then Boolean function “becomes univariate”
f(Xg,--rX,.1) = T (X)
for some polynomial f(x) in GF(2")[x] of degree
at most 2"-2 (if we do not care for the value at 0)
* The degree d of f(x,,...,x,, ;) is the largest wt(j)
such that coefficient in f(x) of X/ is nonzero



Ronjom-Helleseth Attack - Univariate

Let L be the shift operator of the LFSR
L(Sy,-+Sten1) = (SeyqreerSean)

Define f(a') = f(LY(s,,---,S,,.1))

Let x denote the unknown initial state, then
z, = f(xa') where we want to find x

Univariate equation system in x (g=2")
zo=fo(x)=co+c; X +.. +¢y, X2
2, =fy(x) =cy+ cpax+..+c,,a%? xI?
z,=f)(x) =cy+ i x + ... + ¢, a2 xa?



Algebraic attacks of f(x,,...,x, )

Definition
The Boolean function g(x,,...,X, ;) is an annihilator of
f(Xq,-r X)) if

f(Xq,-sX.1) 8(Xg,--,X,.1) = O for all x,,...,x,, ; € {0,1}
Definition
The algebraic immunity (Al) of f

Al(f) = min{deg(g) | f g =0 or (1+f) g = 0}

Hence if z,=1 then
f(SpyeesSeant) B(Ser-rStan.1) = Zy 8(SpreerStan.1)
=8.(Sgs--S,.1) =0



Coding theory — Cyclic Codes

Definition —Linear [N,k,d], code

Cis an [N,k,d], code iff
1) C subset of dimension k over GF(g)V
2) d =min{d,(c,, c,) | c;# ¢, € C}

Definition — Cyclic code
C =(G(x)) (mod x"-1)
( = Ideal generated by G(x) )



Coding and algebraic attack

Theorem
Let f(x) be a Boolean function in univariate form, g=2".
Then any annihilator g(x) of f(x) belongs to the g-ary
cyclic code C; with generator polynomial

G, (x) = gcd(f(x)+1,x91+1)

Proof: Let g(x) be annihilator of f(x), then f(x) g(x)=0 for
all x in GF(2"). Then f(x) g(x) = 0 (mod x9-1+1).
Hence, g(x) =0 (mod gcd(f(x)+1,x41+1).

"Need to find special codewords ”
* g(x) in C; (and Cq,,) of smallest max{wt(j) | g#0}.
e g(x)€{0,1} for all x in GF(2")



Spectral Immunity

Definition

The spectral immunity of (z,) is the smallest linear

complexity(LC) of a sequence (u,) over GF(2") such that
z,u,=0or (1+z,) u=0 forall t

Let z, = f(xa') and u, = g(xa') where (u,) annihilates (z,)
Then if z,=1 we obtain

g(xat)=0-> 2g a"x'=0 (Note: wt(g)=LC(u,))
e Linear system in the LC unknowns x'1, x'2,..., x'LC
* Knowing 2-LC(u,) bits finds x'1, ... and hence x



Spectral Immunity and Cyclic Codes (I)

Theorem
Let z, = f(xa') and u, = g(xa') be such that

f(x) g(x) = 0 for all x in GF(2")
Then g(x) is a codeword in the cyclic code C; with
symbols from GF(2") and generator polynomial

G((x)= gcd(f(x)+1,x91+1)

Proof:
Follows since f(x) is Boolean and only takes on the
values 0 and 1. Therefore the elements in GF(2") are
zeros of either f(x) or f(x)+1



Spectral immunity and cyclic codes (1I)

Theorem
The spectral immunity (SI) of (z,) is the smallest
weight of a codeword in the codes over GF(2") with
generator polynomials

G, =gcd(f(x)+1,x91+1)

G;,, = gcd(f(x),xa1+1)

Corollary
— (1N n n
SISD—(I) + (2 ) +"'+(AI)



SI versus Al

Corollary
SISDz(?) + (g) +"'+(£1

e Sllarge = Al large
* Al Large 75 Sl large

Can use codes G; and G;,, to evaluate Al
Al = min_max, {wt(i) | ¢. # 0 for c(x) in C; or C;,,}



Open problems

What are minimum distance of the codes C;?

How much better is the spectral Immunity (SI)
compared to Algebraic immunity (Al)?

How to use the spectral immunity in an optimal way.
This may be a challenge since (SI) is based on the
univariate representation while (Al) depends on the
multivariate representation.

The method works well to attack many variants of
the WG cipher family (Rgnjom 2015)



The Future

ArcticCrypt
A New Northern World Record



Northernmost Crypto Conferences
(Top 5 ranking)

—Espoo (1998) 60" N
—Lofthus (1993) 60’ N
—St. Petersburg (2006) 59’ N
—Tallin (2011) 59° N

—Aarhus (2005) 56" N



July 17-22, 2016, Longyearbyen, Svalbard, (Norway)

http://www.selmer.uib.no/ArcticCrypt/

* Location: 78 degrees north
— Latitude: 78°13’11" N
— Longitude: 15°39'00" E
— Elevation above sea level: 1 m =03 ft



Why go to Arctic Crypt?

* Fantastic scenery — Glaciers, Wildlife, Mountains
* Midnight sun the whole week

One Full Day of sightseeing m i —
L ™

* Hotel gives you a gun (and ammunition) as
orotection against polar bears if you hike outside
_ongyearbyen

“Probability of being shot by a tourist is higher than
probability of being killed by a polar bear”



Scientific Program

Program co-chair Bart Preneel
e 4 days of lecturers

* 10 Invited lectures

* Contributed talks by submissions
* Support for younger researchers
* “Midnight lecture”

* Speakers should not hike outside
Longyearbyen before giving their talk
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