Automatic Search for Linear Trails of the SPECK Family

Yuan Yao^{1,2} Bin Zhang² Wenling Wu²

¹TCA Laboratory, Institute of Software, Chinese Academy of Sciences

²University of Chinese Academy of Sciences

Information Security Conference, 2015

Outline

3 An Implementation of Wallén's Algorithm

Summary

Linear Cryptanalysis Against SPECK An Implementation of Wallén's Algorithm Summary Background Our Contribution

SPECK

- By NSA in 2013.
- Lightweight.
- Feistel-like.
- ARX.
- For software applications.

Linear Cryptanalysis Against SPECK An Implementation of Wallén's Algorithm Summarv

Previous Work

Differential Analysis by Alex Biryukov et. al. at CT-RSA 2014.

Background

- Differential Analysis by Farzaneh Abed et. al. at FSE 2014. ٥
- Differential Analysis by Alex Biryukov et. al. at FSE 2014. ۰
- Differential Analysis by Itai Dinur at SAC 2014.
- Differential Fault Analysis by Harshal Tupsamudre et. al. at FDTC 2014.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Linear Cryptanalysis Against SPECK An Implementation of Wallén's Algorithm Summary

Previous Work

• Differential Analysis by Alex Biryukov et. al. at CT-RSA 2014.

Background

- Differential Analysis by Farzaneh Abed et. al. at FSE 2014.
- Differential Analysis by Alex Biryukov et. al. at FSE 2014.
- Differential Analysis by Itai Dinur at SAC 2014.
- Differential Fault Analysis by Harshal Tupsamudre et. al. at FDTC 2014.

Linear Cryptanalysis???

A B A A B A

Linear Cryptanalysis Against SPECK An Implementation of Wallén's Algorithm Summary Background Our Contribution

Our Contribution

- Linear cryptanalysis of SPECK.
- An implementation of Wallén's algorithm.

Image: A image: A

Search Linear Trails Linear Distinguishers Key Recovery Attacks

Basics

Definition (Correlation)

 $c_X \triangleq 2 \Pr(X=0) - 1.$

Search Linear Trails Linear Distinguishers Key Recovery Attacks

Basics

Definition (Correlation)

$$c_X \triangleq 2 \Pr(X=0) - 1.$$

$$H_0: c_X = 0 \longleftrightarrow H_1: c_X \neq 0$$

Search Linear Trails Linear Distinguishers Key Recovery Attacks

Basics

Definition (Correlation)

$$c_X \triangleq 2 \Pr(X=0) - 1.$$

$$H_0: c_X = 0 \longleftrightarrow H_1: c_X \neq 0$$

Lemma (Piling-up Lemma)

 $c_{X\oplus Y}=c_Xc_Y.$

Yuan Yao, Bin Zhang, Wenling Wu Automatic Search for Linear Trails of the SPECK Family

TCA

3

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Search Linear Trails Linear Distinguishers Key Recovery Attacks

Basics

Definitions (Inner Product)

 $X \cdot Y = \bigoplus_{i=0}^{n-1} X_i \& Y_i \in \mathbb{F}_2.$

Search Linear Trails Linear Distinguishers Key Recovery Attacks

Linear Approximation

Š[0]

r rounds encryption

 $\vec{S}[r]$

Yuan Yao, Bin Zhang, Wenling Wu Automatic Search for Linear Trails of the SPECK Family

< ∃ →

э

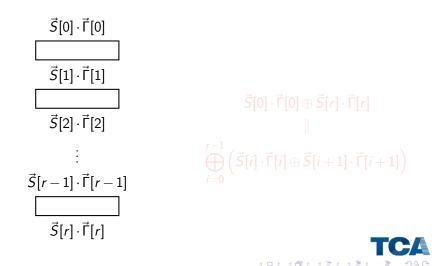
Search Linear Trails Linear Distinguishers Key Recovery Attacks

Linear Approximation

$\vec{S}[0] \cdot \vec{\Gamma}[0]$

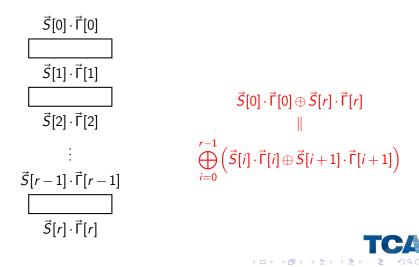
r rounds encryption

 $\vec{S}[r] \cdot \vec{\Gamma}[r]$

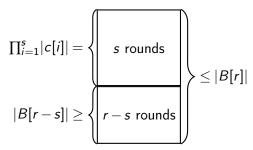

$\vec{S}[0] \cdot \vec{\Gamma}[0] \oplus \vec{S}[r] \cdot \vec{\Gamma}[r] \in \mathbb{F}_2$

Yuan Yao, Bin Zhang, Wenling Wu Automatic Search for Linear Trails of the SPECK Family

Image: A image: A


Search Linear Trails Linear Distinguishers Key Recovery Attacks

Linear Trail


Search Linear Trails Linear Distinguishers Key Recovery Attacks

Linear Trail

Matsui Search

- Proposed at EUROCRYPT 1994.
- Branch-and-bound: $|B[r-s]\prod_{i=1}^{s} c[i]| \le |B[r]|$

Yuan Yao, Bin Zhang, Wenling Wu Automatic Search for Linear Trails of the SPECK Family

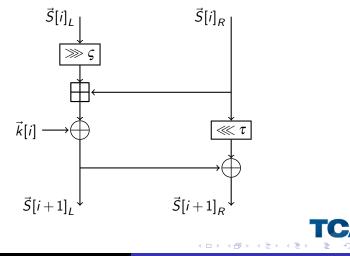
イロト イポト イヨト イヨト

Search Linear Trails

Linear Distinguishers

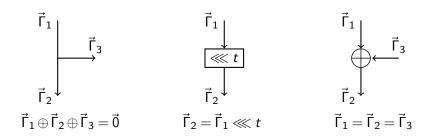
Search Linear Trails Linear Distinguishers Key Recovery Attacks

Matsui Search Algorithm


1:	function Search($B, T = \{\}$)
2:	$r \leftarrow Sizeof(B) - 1, s \leftarrow Sizeof(T)$
3:	if $s = r$ then
4:	$\hat{B}[r] \leftarrow \prod_{i=1}^r c[i]$
5:	else
6:	for T' in Extend(T) do
7:	if $ B[r-(s+1)]\prod_{i=1}^{s+1}c'[i] > \hat{B}[r] $ then
8:	Search (B, T')
9:	else
10:	return
11:	end if
12:	end for
13:	end if
14:	end function
	< □ > < 2 > < 2 > <

Yuan Yao, Bin Zhang, Wenling Wu Automatic Search for Linear Trails of the SPECK Family

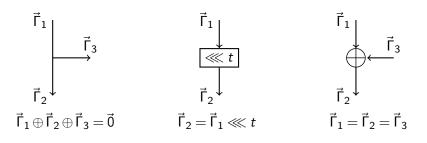
TCA


Search Linear Trails Linear Distinguishers Key Recovery Attacks

Round Function of SPECK

Search Linear Trails Linear Distinguishers Key Recovery Attacks

Approximations of Primitives



Yuan Yao, Bin Zhang, Wenling Wu Automatic Search for Linear Trails of the SPECK Family

< 口 > < 同

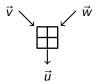
Search Linear Trails Linear Distinguishers Key Recovery Attacks

Approximations of Primitives

Modulo Addition???

Yuan Yao, Bin Zhang, Wenling Wu Automatic Search for Linear Trails of the SPECK Family

< ロ > < 同


→ < □ > < □</p>

Search Linear Trails Linear Distinguishers Key Recovery Attacks

Approximations of Modulo Addition

Definition

$$c(\vec{u},\vec{v},\vec{w}) \triangleq c_{\vec{u}\cdot(\vec{Z}_1\boxplus\vec{Z}_2)\oplus\vec{v}\cdot\vec{Z}_1\oplus\vec{w}\cdot\vec{Z}_2}$$

Yuan Yao, Bin Zhang, Wenling Wu Automatic Search for Linear Trails of the SPECK Family

イロト イポト イヨト イヨト

э

Search Linear Trails Linear Distinguishers Key Recovery Attacks

Linear Approximation Table

- Enumerate $\vec{u}, \vec{v}, \vec{w}$, calculate $c(\vec{u}, \vec{v}, \vec{w})$, and sort.
- Time: $O(2^{3n})$, Memory: $O(2^{3n})$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Search Linear Trails Linear Distinguishers Key Recovery Attacks

Linear Approximation Table

- Enumerate $\vec{u}, \vec{v}, \vec{w}$, calculate $c(\vec{u}, \vec{v}, \vec{w})$, and sort.
- Time: $O(2^{3n})$, Memory: $O(2^{3n})$.

Generate Online!!!

Search Linear Trails Linear Distinguishers Key Recovery Attacks

Wallén's Theorem

Theorem

Let
$$S^0(0,0) \triangleq \{null\}$$
, $S^0(n,k) = S^1(n,k) \triangleq \emptyset$ when $k < 0$ or $k \ge n > 0$, and

$$S^{0}(n,k) \triangleq (S^{0}(n-1,k) || \{0\}) \cup (S^{1}(n-1,k-1) || \{1,2,4,7\})$$

$$S^{1}(n,k) \triangleq (S^{0}(n-1,k) || \{7\}) \cup (S^{1}(n-1,k-1) || \{0,3,5,6\})$$

otherwise, where $S^* \parallel \Omega \triangleq \{ \vec{a} \parallel \vec{b} \mid \vec{a} \in S^*, \vec{b} \in \Omega \}$. Then

$$S(n,k) \triangleq S^0(n,k) \cup S^1(n,k)$$

is the set of all masks such that $c(\vec{u}, \vec{v}, \vec{w}) = \pm 2^{-k}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Search Linear Trails Linear Distinguishers Key Recovery Attacks

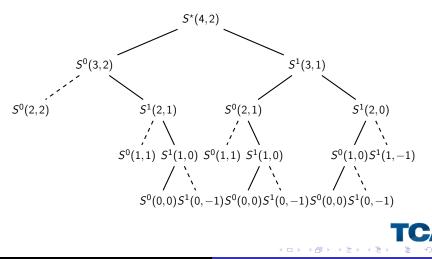
Wallén's Theorem

Example

$$S^{0}(n,0) = \{(0\cdots 00)\},\$$

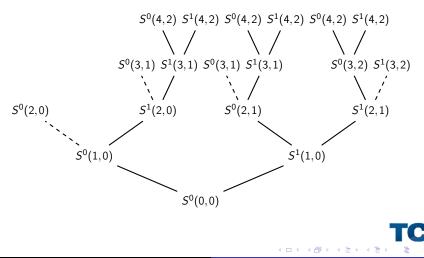
$$S^{1}(n,0) = \{(0\cdots 07)\},\$$

thus

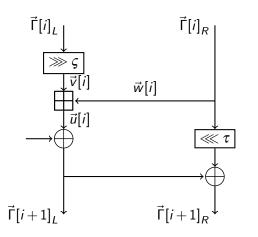

$$S(n,0) = \{ ((0\cdots00), (0\cdots00), (0\cdots00)), ((0\cdots01)), ((0\cdots01)), (0\cdots01), (0\cdots01)) \}$$

is the set of all masks such that $c(\vec{u}, \vec{v}, \vec{w}) = \pm 1$.

74


Search Linear Trails Linear Distinguishers Key Recovery Attacks

Top-down Method


Search Linear Trails Linear Distinguishers Key Recovery Attacks

Bottom-up Method

Search Linear Trails Linear Distinguishers Key Recovery Attacks

Extend()

$$\vec{u}[i] = \vec{\Gamma}[i+1]_L \oplus \vec{\Gamma}[i+1]_R$$
$$\vec{v}[i] = \vec{\Gamma}[i]_L \ggg \varsigma$$
$$\vec{w}[i] = \vec{\Gamma}[i]_R \oplus \left(\vec{\Gamma}[i+1]_R \ggg \tau\right)$$

Yuan Yao, Bin Zhang, Wenling Wu Automatic Search for Linear Trails of the SPECK Family

 $\vec{u}[r] = \vec{X}[r+1] \oplus \vec{Y}[r+1]$ $\vec{u}[r-1] = (\vec{v}[r] \lll \varsigma) \oplus \vec{w}[r] \oplus \left(\vec{Y}[r+1] \ggg \tau\right)$ $\vec{u}[i] = (\vec{v}[i+1] \lll \varsigma) \oplus \vec{w}[i+1] \oplus ((\vec{u}[i+1] \oplus (\vec{v}[i+2] \lll \varsigma)) \ggg \tau)$

Introduction

Summarv

Linear Cryptanalysis Against SPECK

An Implementation of Wallén's Algorithm

Search Linear Trails Linear Distinguishers Key Recovery Attacks

Search Linear Trails Linear Distinguishers Key Recovery Attacks

Search Results

٩	SPECK-32								
	Rounds(r)	1	2	3	4	5	6	7	8
	B[r]	1	1	2^{-1}	2 ⁻³	2 ⁻⁵	2 ⁻⁷	2 ⁻⁹	2 ⁻¹²
	Rounds(r)	9	10	11	12	13	14	15	16
	B[r]	2^{-14}	2^{-17}	2^{-19}	2^{-20}	2 ⁻²²	2 ⁻²⁴	2 ⁻²⁶	2 ⁻²⁸
	Rounds(<i>r</i>)	17	18	19	20	21	22		
	B[r]	2 ⁻³⁰	2 ⁻³⁴	2 ⁻³⁶	2 ⁻³⁸	2 ⁻⁴⁰	2 ⁻⁴²		

• SPECK-48/ 64/ 96/ 128: Omitted.

Yuan Yao, Bin Zhang, Wenling Wu Automatic Search for Linear Trails of the SPECK Family

イロト イポト イヨト イヨト

TCA

Search Linear Trails Linear Distinguishers Key Recovery Attacks

Search Results

•	SPECK-32								
	Rounds(r)	1	2	3	4	5	6	7	8
	B[r]	1	1	2^{-1}	2 ⁻³	2 ⁻⁵	2 ⁻⁷	2 ⁻⁹	2 ⁻¹²
	Rounds(r)	9	10	11	12	13	14	15	16
	B[r]	2^{-14}	2^{-17}	2^{-19}	2 ⁻²⁰	2 ⁻²²	2 ⁻²⁴	2 ⁻²⁶	2 ⁻²⁸
	Rounds(r)	17	18	19	20	21	22		
	B[r]	2 ⁻³⁰	2 ⁻³⁴	2 ⁻³⁶	2 ⁻³⁸	2 ⁻⁴⁰	2 ⁻⁴²		
			c / 1 0 0	<u> </u>					

• SPECK-48/ 64/ 96/ 128: Omitted.

Yuan Yao, Bin Zhang, Wenling Wu Automatic Search for Linear Trails of the SPECK Family

イロト イポト イヨト イヨト

TCA

Search Linear Trails Linear Distinguishers Key Recovery Attacks

Linear Distinguishers

Block Length	Trail Length	Correlation	Rounds	Data
32	9	2^{-14}	10	2 ²⁸
48	9	2^{-20}	10	2 ⁴⁰
64	11	2^{-25}	12	2 ⁵⁰
64	12	2^{-31}	13	2 ⁶²
96	6	2^{-11}	7	2 ²²
128	6	2^{-11}	7	2 ²²

Search Linear Trails Linear Distinguishers Key Recovery Attacks

Key Recovery Attacks

Block/ Key Length	Rounds (this paper/ Dinur/ Total)	Data (this pa- per/ Dinur)	Average Time (this paper/ Dinur)
32/ 64 48/ 72 48/ 96 64/ 96 64/ 96 64/ 128 64/ 128 96/ 96 96/ 144 128/ 128 128/ 192 128/ 256	12/ 14/ 22 11/ 14/ 22 12/ 15/ 23 13/ 18/ 26 14/ 18/ 26 14/ 19/ 27 15/ 19/ 27 8/ 16/ 28 9/ 17/ 29 8/ 17/ 32 9/ 18/ 33 7/ 19/ 34	$\begin{array}{c} 2^{30.8668}/2^{31}\\ 2^{43.727}/2^{41}\\ 2^{43.727}/2^{41}\\ 2^{54.6279}/2^{61}\\ 2^{62.7302}/2^{61}\\ 2^{54.8029}/2^{61}\\ 2^{62.7302}/2^{61}\\ 2^{27.6463}/2^{85}\\ 2^{27.6463}/2^{85}\\ 2^{28.2959}/2^{113}\\ 2^{28.2959}/2^{113}\\ 2^{28.2959}/2^{113}\\ \end{array}$	$\begin{array}{c} 2^{61.2164}/2^{63}\\ 2^{68.345}/2^{65}\\ 2^{92.345}/2^{89}\\ 2^{86.1551}/2^{93}\\ 2^{95.8714}/2^{93}\\ 2^{118.155}/2^{125}\\ 2^{127.871}/2^{125}\\ 2^{74.8954}/2^{85}\\ 2^{122.895}/2^{133}\\ 2^{92.7363}/2^{113}\\ 2^{156.736}/2^{271}\\ 2^{220.736}/2^{241}\end{array}$
			TCA

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Masks of Carry

Example

$$ec{u} = (1100), ec{v} = ec{w} = (1000),$$
 then
 $ec{\phi} = ec{v} \oplus ec{u} = (0100),$
 $ec{\phi} = ec{w} \oplus ec{u} = (0100).$

Common Prefix Mask & Correlation

Lemma

Let
$$\vec{\delta}$$
 be the CPM of $\vec{u}, \vec{v}, \vec{w}$. Then

$$c(\vec{u}, \vec{v}, \vec{w}) = \begin{cases} (-1)^{wt} (\vec{\delta} \vec{\phi} \vec{\phi}) 2^{-wt} (\vec{\delta}), & \text{if } \vec{\phi} = \vec{\phi} \vec{\delta} \text{ and } \vec{\phi} = \vec{\phi} \vec{\delta} \\ 0, & \text{otherwise} \end{cases}$$

TCA

→ 3 → 4 3

More Explicit Formula

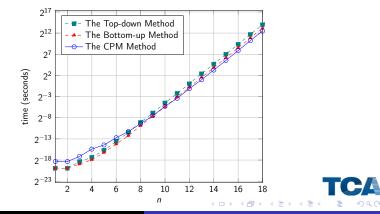
Theorem

 $ec{\delta}$ is the CPM of $ec{u},ec{v},ec{w}$, and $c(ec{u},ec{v},ec{w})
eq 0$ if and only if

$$egin{aligned} ec{\phi} &= ec{\phi}ec{\delta} \ ec{\phi} &= ec{\phi}ec{\delta} \ ec{\phi} &= ec{\phi}ec{\delta} \ ec{\eta} &\gg 1 = \left(\left(ec{u} \oplus ec{\delta}
ight) \gg 1
ight) \oplus ec{\delta} \ ec{0} &= \left(\left(ec{u} \gg 1
ight) \oplus ec{\delta}
ight) \left(\left(ec{\delta} \oplus ec{1}
ight) \gg 1
ight) \ ec{0} &= \left(\left(ec{v} \gg 1
ight) \oplus ec{\delta}
ight) \left(\left(ec{\delta} \oplus ec{1}
ight) \gg 1
ight) \ ec{0} &= \left(\left(ec{w} \gg 1
ight) \oplus ec{\delta}
ight) \left(\left(ec{\delta} \oplus ec{1}
ight) \gg 1
ight) \ ec{0} &= \left(\left(ec{w} \gg 1
ight) \oplus ec{\delta}
ight) \left(\left(ec{\delta} \oplus ec{1}
ight) \gg 1
ight) \end{aligned}$$

A B > A B >

CPM Method


- Generate $\vec{\delta}$ in increasing order of Hamming weight.
- **2** Generate unknowns in $\vec{u}, \vec{v}, \vec{w}$.

A B A A B A

Performance Comparison

- Task: Generating $\bigcup_{k=0}^{n-1} S(n,k)$.
- Platform: 32-bit Win7 with Visual C++ 2015 CTP optimized by /Ox.

Yuan Yao, Bin Zhang, Wenling Wu

Automatic Search for Linear Trails of the SPECK Family

Conclusions

- It is hard to find linear trails for large blocks.
- SPECK-32 is immune to the 1-dimensional linear cryptanalysis.
- Linear cryptanalysis seems less efficient than differential cryptanalysis to SPECK.

Further Work

- Threshold search.
- Vectorial linear cryptanalysis.
- Apply the search to other ARX ciphers.

Q & A yaoyuan@tca.iscas.ac.cn

Acknowledgment

- Thanks to my family, my supervisors, and my friends.
- Thanks to ISC, and anonymous reviewers.
- Thanks to all of you.

A 3 b